To address the problem of changes of business processes for an enterprise or organization,we utilize the normal and exceptional instances to recommend the next possible activity for the current incomplete workflow instance.Since every workflow instance is a sequence of activity names,it cannot be calculated numerically.we firstly extract the order of each activity in the sequence as a number value,and then get a matrix which is similar to User-Item matrix in traditional recommendation systems.This matrix can facilitate the calculation of similarity between two workflow instances.Finally,we choose these complete instances which are most similar to the current incomplete instance,construct the activity list as the recommendation result by these instances.Experimental results show that the proposed algorithm is effective and efficient.
[1] MARLON D,WIL M P Aalst,ARTHUR H.Process-Aware Information Systems:Bridging People and Software Through Process Technology[M].New Jersey,NJ,USA:John Wiley & Sons,2005.21-34.
[2] DOMINIC M,JOACHIM H,MARKUS H,et al.IT support for release management processes in the automotive industry[A].Business Process Management[C].Heidelberg:Springer Verlag,2006.368-377.
[3] JAAP G,J M AKKERMANS.Value-based requirements engineering:exploring innovative E-commerce ideas[J].Requirements Engineering,2003,8(2):114-134.
[4] RICHARD L,MANFRED R.IT support for healthcare processes-premises,challenges,perspectives[J].Data & Knowledge Engineering,2007,61(1):39-58.
[5] GIANNIS V,DIMITRIS G,GREGORIS M.Modeling e-government service workflows through recurring patterns[A].Electronic Government[C].Heidelberg:Springer Verlag,2004.483-488.
[6] JOSÉFÉLIX M,CARLOS B,FRANCISCO S.Modeling administrative procedures to improve information to the public[A].Advancing Democracy,Government and Governance[C].Heidelberg:Springer Verlag,2012.155-169.
[7] BELA M,MANFRED R,JOHANNES B.Unleashing the effectiveness of process-oriented information systems:problem analysis,critical success factors,and implications[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2008,38(3):280-291.
[8] JI Z,QING L,KAI X.Flowrecommender:a workflow recommendation technique for process provenance[A].Proceedings of the 8th Australasian Data Mining Conference[C].Melbourne,Australia:ACS,2009.55-61.
[9] AGNES K,THOMAS H,ANDREAS O.Recommendation-based editor for business process modeling[J].Data & Knowledge Engineering,2011,70(6):483-503.
[10] 曹斌,尹建伟,邓永光,等.一种基于近距离最大子图优先的业务流程推荐技术[J].计算机学报,2013,36(2):263-274. CAO Bin,YIN Jian-wei,DENG Yong-guang,et al.A near neighbour and maximal subgraph first based business process recommendation technique[J].Chinese Journal of Computers,2013,36(2):263-274.(in Chinese)
[11] YING L,BIN C,LIDA X,et al.An efficient recommendation method for improving business process modeling[J].IEEE Transactions on Industrial Informatics,2014,10(1):502-513.
[12] KUANG M,LIDAN S,JU F,et al.Competence-based song recommendation:matching songs to one's singing skill[J].IEEE Transactions on Multimedia,2015,17(3):396-408.
[13] AMOS A,AVINATAN H,SARIT K,et al.Movie recommender system for profit maximization[A].Proceedings of the 7th ACM Conference on Recommender Systems[C].New York,NY,USA:ACM,2013.121-128.
[14] RAYMOND J M,LORIENE R.Content-based book recommending using learning for text categorization[A].Proceedings of the 5th ACM Conference on Digital Libraries[C].New York,NY,USA:ACM,2000.195-204.
[15] 黄震华.云环境下top-n推荐算法[J].电子学报,2015,43(1):54-61. HUANG Zhen-hua.Top-n recommendation algorithms for cloud data[J].Acta Electronica Sinica,2015,43(1):54-61.(in Chinese)
[16] 黄震华,张波,方强,等.一种社交网络群组间信息推荐的有效方法[J].电子学报,2015,43(6):1090-1093. HUANG Zhen-hua,ZHANG Bo,FANG Qiang,et al.An efficient algorithm of information recommendation between groups in social networks[J].Acta Electronica Sinica,2015,43(6):1090-1093.(in Chinese)
[17] MUKUND D,GEORGE K.Item-based top-n recommendation algorithms[J].ACM Transactions on Information Systems,2004,22(1):143-177.
[18] Greg L,BRENT S,JEREMY Y.Amazon.com recommendations:item-to-item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80.
[19] BADRUL S,GEORGE K,JOSEPH K,et al.Item-based collaborative filtering recommendation algorithms[A].Proceedings of the 10th International Conference on World Wide Web[C].New York,NY,USA:ACM,2001.285-295.
[20] JOSEPH A K,BRADLEY N M,DAVID M,et al.Grouplens:applying collaborative filtering to usenet news[J].ACM Communications,1997,40(3):77-87.
[21] CHRISTIAN D,GEORGE K.A comprehensive survey of neighborhood-based recommendation methods[A].Recommender Systems Handbook[C].USA:Springer US,2011.207-144.
[22] HELEN S,BARBARA W,BOUDEWIJN D,et al.Supporting flexible processes through recommendations based on history[A].Business Process Management[C].Heidelberg:Springer Verlag,2008.51-66.
[23] RON Z.A programmer's guide to Data Mining:The Ancient Art of the Numerati[OL].http://guidetodatamining.com,2016-03-10.
[24] KOEN V,BART G.Unifying nearest neighbors collaborative filtering[A].Proceedings of the 8th ACM Conference on Recommender Systems[C].New York,USA:ACM,2014.177-184.
[25] JAMES C,YIPING K,WILFRED N.Graphgen:A Graph Synthetic Generator[OL].http://www.cse.ust.hk/graphgen,2016-03-10.
[26] WOOK-SHIN H,JINSOO L,MINH-DUC P,et al.iGraph:a framework for comparisions of disk-based graph indexing techniques[J].Proceedings of the VLDB Endowment,2010,3(1):449-459.
[27] 印桂生,张亚楠,董宇欣,等.基于受限信任关系和概率分解矩阵的推荐[J].电子学报,2014,42(5):904-911. YIN Gui-sheng,ZHANG Ya-nan,DONG Yu-xin,et al.A constrained trust recommendation using probabilistic matrix faccctorization[J].Acta Electronica Sinica,2014,42(5):904-911.(in Chinese)
[28] JINGWEI X,YUAN Y,HANGHANG T,et al.Ice-breaking:mitigating cold-start recommendation problem by rating comparison[A].Proceedings of the 24th International Conference on Artificail Intelligence[C].USA:AAAI Press,2015.3981-3987.
[29] GEORGE K.Evaluation of item-based top-n recommendation algorithms[A].Proceedings of the 10th International Conference on Information and Knowledge Management[C].New York,NY,USA:ACM,2001.247-254.
[30] HORATIU D,MAREK G,NEGAR H,et al.On-demand feature recommendations derived from mining public product descriptions[A].Proceedings of the 33rd International Conference on Software Engineering[C].New York,NY,USA:ACM,2011.181-190.