The Electrical Mechanism Study of High-Ruggedness N-Channel RF-LDMOS Under TLP Stress
LI Hao1,2, REN Jian-wei1, DU Huan1
1. Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
摘要 提高射频功率器件的鲁棒性有利于增强器件的抗静电放电能力和抗失配能力.为了直观地了解器件内部发生的电学过程,本文研究了高鲁棒性N型沟道RF-LDMOS(Radio Frequency Lateral Diffusion MOS)在TLP(Transmission Line Pulse)应力下的电学机理.利用0.18μm BCD(Bipolar/CMOS/DMOS)先进制程,实现了特定尺寸器件的设计与流片.通过实测与仿真的对比,发现静电放电失效的随机性、芯片内部的热效应是导致仿真和实测差异的非理想因素.通过对TLP仿真的各阶段重要节点的分析,证明了源极下方的P型埋层有利于提高空穴电流的泄放能力,从而提高RF-LDMOS的鲁棒性.
Abstract:Improving the ruggedness of radio frequency power device is beneficial to enhance the ability of withstanding electro-static discharge (ESD) and output mis-match.To understand the electrical process happened in device intuitively,the electrical mechanism of state-of-art high-ruggedness N-channel RF-LDMOS (Radio Frequency Lateral Diffusion MOS),under TLP (Transmission Line Pulse) stress,has been studied.RF-LDMOS FETs with different gate widths had been manufactured using advanced 0.18μm BCD (Bipolar/CMOS/DMOS) process.It is found that the different failure points of simulation and measurement are coming from the random failure of ESD stress and thermal problems.The simulation results of different nodes under TLP stress proved that the P buried layer under source area plays an important role in holes flowing,and improves the ruggedness of RF-LDMOS.
[1] Sampath Kumar B,Mayank Shrivastava.Part I:On the unification of physics of quasi-saturation in LDMOS devices[J].IEEE Transactions on Electron Devices,2018,65(1):191-198.
[2] Daniel Gruner,Roland Sorge,Olof Bentsson,et al.Analysis,design,and evaluation of LDMOS FETs for RF power applications up to 6GHz[J].IEEE Transactions on Microwave Theory and Techniques,2010,58(12):4022-4030.
[3] Hao Li,Mifang Cong,Ke Li,Huan Du.Source engineering on ruggedness and RF performance of N-channel RFLDMOS[J].Microelectronics Reliability,2018,87:57-63.
[4] Feng H,Chen G,et al.A mixed-mode ESD protection circuit simulation-design methodology[J].IEEE JSSC,2003,38(6):995-1006.
[5] Chung Y,Xu H,Ida R,Baird B.Snapback breakdown dynamics and ESD susceptibility of LDMOS[A].Proceeding IEEE International Reliability Physics Symposium[C].San Jose,California,USA:IRPS,2006.352-355.
[6] Wei-jen Chang,Ming-Dou Ker.The Impact of drift Implant and layout parameters on ESD robustness for on-chip ESD protection devices in 40-V CMOS technology[J].IEEE Transaction on Device and Materials Reliability,2007,7(2):324-332.
[7] Synopsys Inc.Three-Dimensional Electrostatic Discharge Simulation of a Gate-Grounded NMOS Device[EB/OL].https://solvnet.synopsys.com/retrieve/2691373.html?otSearchResultSrc=advSearch&otSearchResultNumber=1&otPageNum=1,2017-06-22.
[8] Theeuwen S J C H,Boet de J A M,et al.LDMOS ruggedness reliability[J].Microwave Journal,2009,5:96-104.
[9] Maloney T,Khurana N.Transmission line pulsing techniques for circuit modeling of ESD phenomena[A].Proceeding EOS/ESD Symposium[C].Minneapolis,Minnesota,USA:EOS/ESD Symposium,1985.49-54.
[10] ANSI/ESDA/JEDEC JS-001-2017,Electrostatic Discharge Sensitivity Testing-Human Body Model (HBM)-Component Level[S].
[11] Cilento T,Schenkel M,et al.Simulation of ESD protection devices in an advanced CMOS technology using a TCAD workbench based on an ESD calibration methodology[J].Microelectronics Reliability,2010,50:1367-1372.
[12] Esmark K,Gossner H,Stadler W.Advanced Simulation Methods for ESD Protection Development (1st ed)[M].Berlin:Springer Press,2003.
[13] Johan Bourgeat,Nicolas Guitard,Florence David.ESD protection structure enhancement against latch-up issue using TCAD simulation[A].39th Electrical Overstress/Electrostatic Discharge Symposium[C].Tucson,Arizona,USA:EOS/ESD Symposium,2017.1-9.