Abstract:A sparse concentric ring array method based on 0-1 programming is proposed.Differential evolution algorithm is applied in the 0-1 programming.By obtaining multiple planes in the main lobe of the concentric ring array and assuming the side-lobe level,the beam width of the selected plane pattern and the element number of the array as the goal for optimization to reduce the cost of the concentric ring phased array.In order to validate the proposed method,a 9-ring and a 10-ring concentric circular array are calculated.The calculated results show that the element number of the 9-ring concentric ring array is reduced from 279 to 161,the side-lobe level is reduced from-17.4 dB to-20.8 dB,and the half power beam width increases by 0.22°.The element number of the 10-ring concentric ring array is reduced from 341 to 190,the side-lobe level is reduced from-17.4 dB to-23.9 dB,and the half power beam width increases by 0.79°.
谢欢欢, 景跃骐, 李艳. 0-1规划的稀布同心圆阵方法研究[J]. 电子学报, 2018, 46(1): 61-67.
XIE Huan-huan, JING Yue-qi, LI Yan. Research on Sparse Concentric Ring Array Based on 0-1 Programming. Acta Electronica Sinica, 2018, 46(1): 61-67.
[1] BALANIS C A.Antenna Theory Analysis and Design (3rd Edition)[M].Hoboken,New Jersey,USA:John Wiley & Sons Inc,2005.365-369.
[2] 薛正辉,李伟明,任伍.阵列天线分析与综合[M].北京:北京航空航天大学出版社,2011.312-317.
[3] DESSOUKY M I,SHARSHAR H A,ALBAGORY Y A.Optimum normalized-Gaussian tapering window for side lobe reduction in uniform concentric circular arrays[J].Progress in Electromagnetics Research,2007,69:35-46.
[4] HAUPT R L.Optimized element spacing for low sidelobe concentric ring arrays[J].IEEE Transactions on Antennas and Propagation,2008,56(1):266-268.
[5] 贾维敏,林志强,姚敏立,赵鹏,赵建勋.一种多约束稀布线阵的天线综合方法[J].电子学报,2013,41(5):926-930. JIA Wei-min,LIN Zhi-qiang,YAO Min-li,ZHAO Peng,ZHAO Jian-xun.A synthesis technique for linear sparse arrays with multiple constraints[J].Acta Electronica Sinica,2013,41(5):926-930.(in Chinese)
[6] 胡继宽,王布宏.基于差集与遗传算法的同心圆阵稀疏优化方法[J].微波学报,2013,29(4):24-28. HU Ji-kuan,WANG Bu-hong.Method of optimal thinned concentric ring array based on difference sets and genetic algorithm[J].Journal of Microwaves,2013,29(4):24-28.(in Chinese)
[7] ZHAO X W,YANG Q S,ZHANG Y H.A hybrid method for the optimal synthesis of 3-D patterns of sparse concentric ring arrays[J].IEEE Transactions on Antennas and Propagation,2016,64(2):515-524.
[8] 于波,陈客松,朱盼,王国强.稀布圆阵的降维优化方法[J].电子与信息学报,2014,36(2):476-481. YU Bo,CHEN Ke-song,ZHU Pan,WANG Guo-qiang.An optimum method of sparse concentric rings array based on dimensionality reduction[J].Journal of Electronics & Information Technology,2014,36(2):476-481.(in Chinese)
[9] 王玲玲,方大纲.运用遗传算法综合稀疏阵列[J].电子学报,2003,31(12A):2135-2138. WANG Ling-ling,FANG Da-gang.Genetic algorithm for the synthesis of thinned array[J].Acta Electronica Sinica,2003,31(12A):2135-2138.(in Chinese)
[10] PATHAK N N,MAHANTI G K,SINGH S K,MISHRA J K,CHAKRABORTY A.Synthesis of thinned planar circular array antennas using modified particle swarm optimization[J].Progress in Electromagnetics Research Letters,2009,12:87-97.
[11] SINGH U,KAMAL T S.Synthesis of thinned planar concentric circular antenna arrays using biogeography-based optimization[J].IET Microwaves,Antennas & Propagation,2012,7(6):822-829.
[12] 施光燕,董加礼.最优化方法[M].北京:高等教育出版社,1999.113-117.
[13] RAINER S,PRICE K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.
[14] WANG Y,CAI Z,ZHANG Q.Differential evolution with composite trial vector generation strategies and control parameters[J].IEEE Transactions on Evolutionary Computation,2011,15(1):55-66.