In order to improve the efficiency of tracking algorithm based on distribution fields and the robustness of the algorithm under complex background,tracking algorithm by compressive distribution fields with adaptive hierarchical structure is presented.Distribution of pixel values in target region is considered in this method,k-means algorithm is introduced to analyse the distribution of pixel values in the first frame,adaptive hierarchical structure of distribution fields is built according to the clustering results.For the problem that the dimension of distribution field model is high,compressive sensing is combined to compress distribution fields,which can reduce the model dimension and improve the efficiency of tracking algorithm.Furthermore,local search strategy in original distribution fields tracking algorithm is changed,random sampling is used to improve the tracking accuracy.Experimental results demonstrate that the proposed algorithm outperforms the state-of-the-art tracking algorithms.
[1] 李康,何发智,潘一腾,等.基于簇相似的多分类器目标跟踪算法[J].电子学报,2016,44(4):821-825. Li Kang,He Fazhi,Pan Yiteng,et al.Multi-classifier object tracking based on cluster similarity[J].Acta Electronica Sinica,2016,44(4):821-825.(in Chinese)
[2] 薛模根,朱虹,袁广林.在线鲁棒判别式字典学习视觉跟踪[J].电子学报,2016,44(4):838-845. Xue Mogen,Zhu Hong,Yuan Guanglin.Online robust discrimination dictionary learning for visual tracking[J].Acta Electronica Sinica,2016,44(4):838-845.(in Chinese)
[3] Henriques J F,Caseiro R,Martins P,et al.High-speed tracking with kernelized correlation filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-596.
[4] Sevilla-Lara L,Learned-Miller E.Distribution fields for tracking[A].Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition[C].Rhode Island:IEEE,2012.1910-1917.
[5] 石武祯,梅林,王文斐,等.面向复杂场景的局部分布场跟踪算法[J].计算机辅助设计与图形学学报,2014,26(11):2031-2038. Shi Wuzhen,Mei Lin,Wang Wenfei,et al.Local distribution fields for tracking in complex scenarios[J].Journal of Computer Aided Design & Computer Graphics,2014,26(11):2031-2038.(in Chinese)
[6] Ning J,Shi W,Yang S,et al.Visual tracking based on distribution fields and online weighted multiple instance learning[J].Image and Vision Computing,2013,31(11):853-863.
[7] 叱干鹏飞,宁纪锋,石武祯.基于全局搜索的实时分布场目标跟踪方法[J].计算机应用研究,2014,31(10):3169-3172. Chigan Pengfei,Ning Jifeng,Shi Wuzhen.Real-time and global searching tracking algorithm based on distribution fields[J].Application Research of Computers,2014,31(10):3169-3172.(in Chinese)
[8] Zhang K,Zhang L,Yang M H.Real-time compressive tracking[A].Proceedings of the European Conference on Computer Vision[C].Berlin Heidelberg:Springer,2012.864-877.
[9] Wu Y,Lim J,Yang M H.Object tracking benchmark[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1834-1848.
[10] Kalal Z,Mikolajczyk K,Matas J.Tracking-learning-detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(7):1409-1422.
[11] Babenko B,Yang M,Belongie S.Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(7):1619-1632.
[12] Gao J,Ling H,Hu W,et al.Transfer learning based visual tracking with Gaussian processes regression[A].Proceedings of the European Conference on Computer Vision[C].Berlin Heidelberg:Springer,2014.188-203.