A High Resolution Algorithm for 2D-DOA Estimation and Its Fast Implementation in the Presence of SαS Distributed Noise
CHEN Yuan1, LIU Jin-lei1, SUN Qi-fu1, YANG Xiang-long1, YU Yao2
1. School of Computer & Communication Engineering, University of Science & Technology Beijing, Beijing 100083, China;
2. Advanced Communication and Networking Lab, Northeastern University, Shenyang, Liaoning 110819, China
摘要 本文设计出一种针对脉冲噪声的二维鲁棒高分辨率波达方向(DOA,Direction of Arrival)估计算法,以解决雷达、声纳等无线通信领域中脉冲噪声环境下IAA(Iterative Adaptive Approach)无法准确估计出DOA的问题.该算法中,用最小p阶范数代替WLS(Weighted Least Squares)作为最优化求解的代价函数.此外,根据Toeplitz-Block-Toeplitz(TBT)矩阵性质和FFT简化计算过程,提出该算法的快速实现方法,提高算法的计算效率.该算法在对称α-稳定(SαS,Symmetric Alpha-Stable)分布噪声环境下建模,仿真结果表明:与CRCO-MUSIC(CoRrentropy based COrrelation-MUltiple Signal Classification)算法和MUSIC-FLOM(MUltiple Signal Classification-Fractional Lower-Order Moment)算法相比,二维lp-IAA算法可以在低信噪比、单快拍条件下有效分辨出相邻多目标信号;快速算法可以在保证高分辨率的前提下,算法平均运算时间降低至原来的约1/40.
Abstract:This paper presents a robust and high-resolution 2D DOA (Direction of Arrival) algorithm in the field of wireless communication such as radar and sonar,solving the problem that IAA (Iterative Adaptive Aproach) fails to provide reliable DOA estimation performance in impulsive noise environment.In the algorithm,we replace WLS (Weighted Least Squares) with least p order norm (lp-norm) as the cost function.Furthermore,to decrease the complexity of the proposed method,a fast implementation of 2D lp-IAA is also developed based on simplifying the calculation of inverse TBT (Toeplitz-Block-Toeplitz) matrix and fast Fourier transform.Simulation results indicate that,under the condition of low GSNR (Generalized Signal-to-Noise Ratio) SαS distributed noise with single snapshot,2D lp-IAA algorithm performs better in distinguishing adjacent multi-target signals than CRCO-MUSIC (CoRrentropy based COrrelation-MUltiple Signal Classification) and MUSIC-FLOM (MUltiple Signal Classification-Fractional Lower-Order Moment).Moreover,the average computation time of the fast method is reduced to nearly 1/40 of the lp-IAA algorithm.
陈媛, 刘金磊, 孙奇福, 阳小龙, 于尧. SαS分布噪声环境下高分辨率二维DOA估计算法及快速实现[J]. 电子学报, 2018, 46(6): 1384-1389.
CHEN Yuan, LIU Jin-lei, SUN Qi-fu, YANG Xiang-long, YU Yao. A High Resolution Algorithm for 2D-DOA Estimation and Its Fast Implementation in the Presence of SαS Distributed Noise. Acta Electronica Sinica, 2018, 46(6): 1384-1389.
[1] 郑洪.MUSIC算法与波达方向估计研究[D].成都:四川大学,2005.
[2] Handel P,Stoica P,Soderstrom T.Capon method for doa estimation:accuracy and robustness aspects[A].Nonlinear Digital Signal Processing[C].Tampere:IEEE,2011.7(1)-7(5).
[3] Hajian M,Coman C,Ligthart L P.Comparison of circular,uniform-and non-uniform Y-shaped array antenna for DOA estimation using Music Algorithm[A].The European Conference on Wireless Technology[C].Manchester:IEEE,2007.143-146.
[4] Almidfa K,Tsoulos G V,Nix A.Performance analysis of ESPRIT,TLS-ESPRIT and unitary-ESPRIT algorithms for DOA estimation in a W-CDMA mobile system[A].First International Conference on 3G Mobile Communication Technologies[C].London:IET,2000.200-203.
[5] Jiang J,Zha D.Alpha stable distribution P order spectrum with its frequency domain characteristics analysis[A].International Conference on Wireless Communications,Networking and Mobile Computing[C].Shanghai:IET,2015.21-23.
[6] Yardibi T,Li J,Stoica P,et al.Source localization and sensing:a nonparametric iterative adaptive approach based on weighted least squares[J].IEEE Transactions on Aerospace & Electronics Systems,2010,46(1):425-443.
[7] Roberts W,Stoica P,Li J,et al.Iterative adaptive approaches to MIMO radar imaging[J].IEEE Journal of Selected Topics in Signal Processing,2010,4(1):5-20.
[8] Shao M,Nikias C L.Signal processing with fractional lower order moments:stable processes and their applications[J].Proceedings of the IEEE,1993,81(7):986-1010.
[9] Liu T H,Mendel J M.A subspace-based direction finding algorithm using fractional lower order statistics[J].IEEE Transactions on Signal Processing,2001,49(8):1605-1613.
[10] Hari K V S,Lalitha V.Subspace-based DOA estimation using fractional lower order statistics[A].IEEE International Conference on Acoustics,Speech,and Signal Processing,ICASSP[C].Prague:IEEE,2011.2580-2583.
[11] Jinfeng Z,Tianshuang Q.A novel covariation based noncircular sources direction finding method under impulsive noise environments[J].Signal Processing,2014,98(5):252-262.
[12] Zhang J,Qiu T,Song A,et al.A novel correntropy based DOA estimation algorithm in impulsive noise environments[J].Signal Processing,2014,104(6):346-357.
[13] Chen Y,So H C,Sun W.lp-norm based iterative adaptive approach for robust spectral analysis[J].Signal Processing,2014,94(1):144-148.
[14] Zeng W J,So H C,Zoubir A M.An lp-norm minimization approach to time delay estimation in impulsive noise[J].Digital Signal Processing,2013,23(23):1247-1254.
[15] Xue M,Xu L,Li J.IAA spectral estimation:fast implementation using the Gohberg-Semencul factorization[J].IEEE Transactions on Signal Processing,2011,59(7):3251-3261.
[16] 张重阳.一种有效的二维DOA估计算法研究[J].现代电子技术,2010,33(23):71-73. Zhang Chong-yang.An efficient algorithm for 2D-DOA estimation[J].Modern Electronics Technique,2010,33(23):71-73.(in Chinese)
[17] Glentis G O,Jakobsson A.Efficient implementation of iterative adaptive approach spectral estimation techniques[J].IEEE Transactions on Signal Processing,2011,59(9):4154-4167.
[18] 陆全,徐仲,叶正麟.Toeplitz矩阵之逆矩阵的新分解式及快速算法[J].数值计算与计算机应用,2005,26(3):191-197. Lu Quan,Xu Zhong,Ye Zheng-lin.New decomposition method for the inverse of Toeplitz matrix and its fast algorithm[J].Journal on Numerical Methods and Computer Applications,2005,26(3):191-197.
[19] A.E.Yagle A fast algorithm for Toeplitz-block-Toeplitz linear systems[A].Acoustics,Speech,and Signal Processing,2001[C].Salt Lake City:IEEE,2001.1929-1932.
[20] Glentis G O.A Fast Algorithm for APES and capon spectral estimation[J].IEEE Transactions on Signal Processing,2008,56(9):4207-4220.