摘要 为了应对由复杂场景和目标形变所造成的目标难以检测的问题,提出一种基于图像显著性轮廓的目标检测方法.该方法首先利用全局概率边界算法(Globalized probability of boundary,gPb)提取图像轮廓,然后利用改进的最大类间方差法(Otsu)自适应地阈值处理获得图像的显著性轮廓;再通过检测并移除目标不稳定轮廓部分构造目标的鲁棒扇形模型;最后联合轮廓的多种局部及全局特征提出三种相似且基于特征概率密度分布的匹配策略,分别检测目标、目标镜面翻转以及发生旋转的目标.通过对多个数据库的实验分析,该方法能够有效地检测出目标及目标镜面翻转,同时在小偏转角范围有效检测旋转后的目标.
Abstract:To address detection difficulty caused by complex scene and the deformation of the object,the salient contour of image based method is proposed in this work.Firstly,the outline of image is extracted by Globalized probability of boundary,and then the improvement of the Otsu for adaptive threshold processing is used to attain the salient contour.Next,the robust fan shape model of the object is constructed by detecting and removing the unstable contour of the object.Finally,three similar matching strategies are proposed by jointing several local and global features of contour.They are based on the features probability density distribution and can detect object,its mirror flip and rotated object,respectively.Through the experimental analysis of multiple databases,the proposed method can effectively detect object and its mirror flip,and at the same time,it can also effectively detect the rotated object in the small range of rotation angle.
[1] 郭明玮,赵宇宙,项俊平,等.基于支持向量机的目标检测算法综述[J].控制与决策,2014,29(2):194-199. Guo M W,Zhao Y Z,Xiang J P,et al.Review of object detection methods based on SVM[J].Control and Decision,2014,29(2):194-199.(In Chinese)
[2] 许新征,丁世飞,史忠植,等.图像分割的新理论和新方法[J].电子学报,2010,38(2A):76-82. Xu X Z,Ding S F,Shi Z Z,et al.New theories and methods of image segmentation[J].Acta Electronica Sinica,2010,38(2A):76-82.(In Chinese)
[3] Lin L,Wang X L,Yang W,Lai J H.Discriminatively trained and-or graph models for object shape detection[J].IEEE Trans,2015,PAMI-37(5):959-972.
[4] Yarlagadda P,Ommer B.From meaningful contours to discriminative object shape[A].Proceedings of the 12th European Conference on Computer Vision[C].Florence,Italy:Springer,2012.766-779.
[5] Srinivasan P,Zhu Q,Shi J.Many-to-one contour matching for describing and discriminating object shape[A].IEEE Conference on Computer Vision and Pattern Recognition[C].San Francisco,CA:IEEE,2010.1673-1680.
[6] Ferrari V,Fevrier L,Jurie F,Schmid C.Groups of adjacent contour segments for object detection[J].IEEE Trans,2008,PAMI-30(1):36-51.
[7] Ferrari V,Fevrier L,Jurie F,Schmid C.From Images to Shape Models for Object Detection[J].International Journal of Computer Vision,2010,87(3):284-303.
[8] Wang X G,et al.Fan shape model for object detection[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Providence,RI:IEEE,2012.151-158.
[9] Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[10] Liu M Y,Tuzel O,Veeraraghavan A,Chellappa R.Fast directional chamfer matching[A].IEEE Conference on Computer Vision and Pattern Recognition[C].San Francisco,CA:IEEE,2010.1696-1703.
[11] Fan H,Cong Y,Tang Y D.Object detection based on scale-invariant partial shape matching[J].Machine Vision and Applications,2015,26(6):711-721.
[12] Belongie S,Malik J,Puzicha J.Shape matching and object recognition using shape contexts[J].IEEE Trans,2002,PAMI-24(1):705-522.
[13] Riemenschneider H,Donoser M,Bischof H.Using partial edge contour matches for efficient object category localization[A].Proceedings of the 11th European Conference on Computer Vision[C].Heraklion,Crete,Greece:Springer,2009.29-42.
[14] Gu C,Lim J,Arbelaez P,Malik J.Recognition using regions[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Miami,FL:IEEE,2009.1063-6919.
[15] Arbelaez P,Maire M,Fowlkes C,Malik J.Contour detection and hierarchical image segmentation[J].IEEE Trans,2011,PAMI-33(5):898-916.
[16] Canny J.A computational approach to edge detection[J].IEEE Trans,1986,PAMI-(6):679-698.
[17] Dollár P,Zitnick C L.Fast edge detection using structured forests[J].IEEE Trans,2015,PAMI-37(8):1558-1570.
[18] Otsu N.A threshold selection method from gray-level histograms[J].Automatica,1975,11(285-296):23-27.
[19] Gumbel E J,Greenwood J A,Durand D.The circular normal distribution:Theory and tables[J].Journal of the American Statistical Association,1953,48(261):131-152.
[20] Everingham M,Van Gool L,Williams C,et al.The pascal visual object classes (voc) challenge[J].International journal of computer vision,2010,88(2):303-338.
[21] Toshev A,Taskar B,Daniilidis K.Shape-based object detection via boundary structure segmentation[J].International journal of computer vision,2012,99(2):123-146.