An Approach to Fast and Robust Detecting of Moving Target in Video Sequences
QIN Xiao-yan1, YUAN Guang-lin1, LI Cong-li2, ZHANG Xu1
1. Eleventh Department, Army Officer Academy of PLA, Hefei, Anhui 230031, China;
2. Third Department, Army Officer Academy of PLA, Hefei Anhui 230031, China
Abstract:Sparse representation is one of effective methods in dealing with the moving object detection.However,the quickness and robustness of object detection are far from being solved in the existing methods.In this paper,a fast and robust moving object detection model based on the maximum posteriori probability is proposed,and a two-stage detection algorithms is designed.At the first stage,sparse coefficient is quickly solved by using coding transfer; At the second stage,based on spatial continuity structure,moving object detection is achieved by using graph cut.The experimental results on several challenging image sequences show that the proposed method has better performance than the existing classical moving object detection algorithms in rapidity and robustness.
秦晓燕, 袁广林, 李从利, 张旭. 一种快速鲁棒的视频序列运动目标检测方法[J]. 电子学报, 2017, 45(10): 2355-2361.
QIN Xiao-yan, YUAN Guang-lin, LI Cong-li, ZHANG Xu. An Approach to Fast and Robust Detecting of Moving Target in Video Sequences. Acta Electronica Sinica, 2017, 45(10): 2355-2361.
[1] KULCHANDANI J S,DANGARWALA K J.Moving object detection:Review of recent research trends[A].Proceedings of International Conference on Pervasive Computing[C].Pune:IEEE Press,2015:1-5.
[2] LUO Yuhan,ZHANG Hong.Sparse learning for robust background subtraction of video sequences[A].Proceedings of Intelligent Computing Theories and Methodologies[C].Fuzhou,China:Springer International Publishing,2015:400-411.
[3] CUI X,HUANG J,ZHANG S,et al.Background subtraction using low rank and group sparsity constraints[A].Proceedings of IEEE Conference on Computer Vision[C].Florence,Italy:IEEE Computer Society Press,2012:612-625.
[4] BO Xin-yuan,TIAN Yizhou,WANG Wen-gao.Background subtraction via generalized fused lasso foreground modeling[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Boston,MA:IEEE Computer Socity Press,2015:4676-4684.
[5] 高仕博,程咏梅,肖利平,等.面向目标检测的稀疏表示方法研究进展[J].电子学报,2015,43(2):320-332. GAO Shi-bo,CHENG Yong-mei,XIAO Li-ping,et al.Recent advances of sparse representation for object detection[J].Acta Electronica Sinica,2015,43(2):320-332.(in Chinese)
[6] 蒋建国,金玉龙,齐美彬,等.基于稀疏表达残差的自然场景运动目标检测[J].电子学报,2015,43(9):1738-1744. JIANG Jian-guo,JIN Yu-long,QI Mei-bin,et al.Moving target detection in natural scene based on sparse representation of residuals[J].Acta Electronica Sinica,2015,43(9):1738-1744.(in Chinese)
[7] WRIGHT J,YANG A Y,GANESH A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
[8] HUANG Jun-zhou,HUANG Xiao-lei,METAXAS Dimitris.Learning with dynamic group sparsity[A].Proceedings of IEEE International Conference on Computer Vision[C].Los Alamitos:IEEE Computer Society Press,2009:64-71.
[9] ZHAO Cong,WANG Xiao-gang,CHAM Wai-Kuen.Background subtraction via robust dictionary learning[J].EURASIP Journal on Image and Video Processing,2011,2011(2):1-12.
[10] LU Cewu,SHI Jian-ping,JIA Jia-ya.Online robust dictionary learning[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Portland,OR:IEEE Press,2013:415-422.
[11] CANDES E J,LI X D,MA Y,et al.Robust principal component analysis?[J].Journal of the ACM,2011,58(3):1-37.
[12] ZHOU Z H,Li X D,WRIGHT J,et al.Stable principal component pursuit[A].Proceedings of the 2010 IEEE International Symposium on Information Theory[C].Austin,TX:IEEE Press,2010:1518-1522.
[13] ZHOU Xiao-wei,YANG Can,YU Wei-chuan.Moving object detection by detecting contiguous outliers in the low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(3):597-610.
[14] SCHICK A,BAUML M,STIEFELHAGEN R.Improving foreground segmentations with probabilistic superpixel markov random fields[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recongnition Workshops[C].Providence,RI:IEEE Press,2012:27-31.
[15] LI S Z.Markov Random Field Modeling in Image Analysis[M].London:Springer,2009.
[16] 平岡和幸,堀玄著,陈筱烟译.程序员的数学2概率统计[M].北京:人民邮电出版社,2015.
[17] ELAD Michael.Sparse and Redundant Representations From Theory to Application in Signal and Image Processing[M].NewYork:Springer,2010.
[18] CHEN S S,DONOHO D L,SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,2001,20(1):33-61.
[19] YANG J,WRIGHT J,HUANG T,et al.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873.
[20] 何志勇,孙立宁,陈立国.Otsu准则下分割阈值的快速计算[J].电子学报,2013,41(2):267-272. HE Zhi-yong,SU Li-ning,CHEN Li-guo.Fast computation of threahold based on otsu criterion[J].Acta Electronica Sinica,2013,41(2):267-272.(in Chinese).