摘要 现有推荐系统通常采用评分、评论等显式反馈数据实现个性化推荐.然而,显式反馈数据由于在实际中难以获取或因质量问题而往往变得不可用,从而导致相关推荐算法的应用范围受到很大限制.与此相反,诸如点击行为、浏览记录等隐式反馈数据在现实中大量存在.本文提出了一种面向游戏玩家的基于隐式反馈数据的游戏推荐方法.该方法综合考虑了玩家操作次数、操作时长等隐式反馈数据及其时效性,构建了基于伪评分的玩家对游戏的偏好模型,而后通过改进了的SVD++(Singular Value Decomposition++)算法实现个性化游戏推荐.在大规模真实数据集上的实验结果表明本文提出的方法具有更高的推荐精确率和召回率.
Abstract:The existing recommendation systems typically employ explicit feedbacks,such as ratings and reviews,to achieve personalized recommendations.However,since the explicit feedbacks are hard to obtain in practice or have poor quality,their applications in the recommendation field are limited.In contrast,implicit feedbacks such as click behaviors and browsing histories are widely available in reality.A game recommendation method based on implicit feedbacks is presented,to provide the personalized game recommendation for game players.This method integrates the time-based implicit feedbacks,such as the times and duration of user operations,and constructs the player's preference model based on the pseudo rating.Meanwhile,it gives the personalized game recommendation by the improved SVD + +(Singular Value Decomposition + +) algorithm.The extensive results of the experiment based on the real data set show that the proposed method has the higher precision and recall.
[1] Billsus D,Pazzani M J.Learning collaborative information filters[A].Proceedings of the 15th International Conference on Machine Learning[C].Madison:ICML,1998.46-54.
[2] Koren Y.Factorization meets the neighborhood:a multifaceted collaborative filtering model[A].Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining[C].Las Vegas:ACM,2008.426-434.
[3] Koren Y.Collaborative filtering with temporal dynamics[J].Communications of the ACM,2010,53(4):89-97.
[4] Yang B,Lei Y,Liu J,et al.Social collaborative filtering by trust[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(8):1633-1647.
[5] 俞春花,刘学军,等.基于上下文相似度和社会网络的移动服务推荐方法[J].电子学报,2017,45(6):1530-1536. YU Chun-hua,LIU Xue-jun,et al.Mobile service recommendation based on context similarity and social network[J].Acta Electronica Sinca,2017,45(6):1530-1536.(in Chinese)
[6] 王俊,李石君,等.一种新的用于跨领域推荐的迁移学习模型[J].计算机学报,2017,40(10):2367-2380. WANG Jun,LI Shi-jun,et al.A new transfer learning model for cross-domain recommendation[J].Chinese Journal of Computer,2017,40(10):2367-2380.(in Chinese)
[7] Pan R,Zhou Y,Cao B,et al.One-class collaborative filtering[A].Proceedings of the 8th IEEE International Conference on Data Mining[C].Pisa:IEEE,2008.502-511.
[8] Li Y,Hu J,Zhai C X,et al.Improving one-class collaborative filtering by incorporating rich user information[A].Proceedings of the 19th ACM International Conference on Information and Knowledge Management[C].Toronto:ACM,2010.959-968.
[9] Pan W,Chen L.GBPR:Group preference based bayesian personalized ranking for one-class collaborative filtering[A].Proceedings of the 23rd International Joint Conference on Artificial Intelligence[C].Beijing:IJCIA,2013.2691-2697.
[10] Hidasi B,Tikk D.Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback[J].Machine Learning and Knowledge Discovery in Databases,2012(2):67-82.
[11] Delporte J,Karatzoglou A,Matuszczyk T,et al.Socially enabled preference learning from implicit feedback data[A].Joint European Conference on Machine Learning and Knowledge Discovery in Databases[C].Berlin:ECML PKDD,2013.145-160.
[12] Hu Y,Koren Y,Volinsky C.Collaborative filtering for implicit feedback datasets[A].Proceedings of the 8th IEEE International Conference on Data Mining[C].Pisa:IEEE,2008.263-2721.
[13] Levandoski J J,Sarwat M,Eldawy A,et al.Lars:A location-aware recommender system[A].IEEE 28th International Conference on Data Engineering[C].Washington:IEEE,2012.450-461.
[14] Yao W,He J,Huang G,et al.A Graph-based model for context-aware recommendation using implicit feedback data[J].World Wide Web,2015,18(5):1351-1371.
[15] Ostuni V C,Di Noia T,Di Sciascio E,et al.Top-n recommendations from implicit feedback leveraging linked open data[A].Proceedings of the 7th ACM Conference on Recommender Systems[C].Hong Kong:ACM,2013.85-92.
[16] Li G,Ou W.Pairwise probabilistic matrix factorization for implicit feedback collaborative filtering[J].Neurocomputing,2016,204:17-25.
[17] Wang S,Huang S,Liu T Y,et al.Ranking-oriented collaborative filtering:A Listwise Approach[J].ACM Transactions on Information Systems,2016,35(2):10.