Social Community Structure and Information Detection Scheme Based on Personal Willingness
WANG Lin-yu1,2, GU Ke1,3, YU Fei1,3, YIN Bo1,3, LIAO Nian-dong1,3
1. Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science & Technology, Changsha, Hunan 410114, China;
2. School of Electronic Information, Hunan Institute of Information Technology, Changsha, Hunan 410151, China;
3. School of Computer & Communication Engineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
Abstract:Personal willingness is one of the most important factors influencing the construction of social community and the information dissemination in social network.In this paper,we propose a social community structure and information detection scheme based on personal willingness in social network.In our proposed scheme,the social community detection algorithm uses the node attributes to detect social community structure and further find overlapping communities;the information dissemination method is based on the exponential model,which constructs the feature vector by the edge feature and the node feature,the willingness vector by the personal willingness and the community willingness,and the basic relationship by the dissemination probability and dissemination delay.Experimental results show that our proposed scheme can ensure the effectiveness of social community detection and the initiative and reliability of information dissemination.
汪林玉, 谷科, 余飞, 尹波, 廖年冬. 基于个人意愿的社会网络团体结构与信息检测方案[J]. 电子学报, 2019, 47(4): 886-895.
WANG Lin-yu, GU Ke, YU Fei, YIN Bo, LIAO Nian-dong. Social Community Structure and Information Detection Scheme Based on Personal Willingness. Acta Electronica Sinica, 2019, 47(4): 886-895.
[1] 余智欣,黄天戍,等.一种新型的分布式隐私保护计算模型及其应用[J].西安交通大学学报,2007,41(8):954-958. YU Zhi-xin,HUANG Tian-shu,et al.Novel privacy-protecting distributed computation model and its applications[J].Journal of Xi'an Jiaotong University,2007,41(8):954-958.(in Chinese)
[2] SHEN H,CHENG X,CAI K,et al.Detect overlapping and hierarchical community structure in networks[J].Physica A:Statistical Mechanics and Its Applications,2009,388(8):1706-1712.
[3] BLONDEL V D,GUILLAUME J L,et al.Fast unfolding of communities in large networks[J].Journal of Statistical Mechanics:Theory and Experiment,2008,(10):P10-008.
[4] AHN Y Y,BAGROW J P,LEHMANN S.Link communities reveal multiscale complexity in networks[J].Nature,2010,466(7307):761-764.
[5] VON LUXBURG U.A tutorial on spectral clustering[J].Statistics and Computing,2007,17(4):395-416.
[6] WHANG J J,GLEICH D F,DHILLON I S.Overlapping community detection using seed set expansion[A].Proceedings of the 22nd ACM International Conference on Information & Knowledge Management[C].US:ACM,2013.2099-2108.
[7] PONS P,LATAPY M.Computing communities in large networks using random walks[J].Journal of Graph Algorithms and Applications,2006,10(2):191-218.
[8] RAGHAVAN U N,ALBERT R,KUMARA S.Near linear time algorithm to detect community structures in large-scale networks[J].Physical Review E,2007,76(3):036106.
[9] DANG T A,VIENNET E.Community detection based on structural and attribute similarities[A].International Conference on Digital Society[C].US:ICDS,2012.7-12.
[10] KEWALRAMANI M N.Community Detection in Twitter[M].Baltimore County,US:University of Maryland,2011.231-300.
[11] DEITRICK W,HU W.Mutually enhancing community detection and sentiment analysis on twitter networks[J].Journal of Data Analysis & Information Processing,2013,1(3):19-29.
[12] 孙怡帆,李赛.基于相似度的微博社交网络的社区发现方法[J].计算机研究与发展,2014,51(12):2797-2807. SUN Yi-fan,LI Sai.Similarity-based community detection in social network of microblog[J].Journal of Computer Research and Development,2014,51(12):2797-2807.(in Chinese)
[13] GOLDENBERG J,LIBAI B,MULLER E.Talk of the network:A complex systems look at the underlying process of word-of-mouth[J].Marketing Letters,2001,12(3):211-223.
[14] YOUNG H P.The diffusion of innovations in social networks[J].General Information,2000,413(1):2329-2334.
[15] KEMPE D,KLEINBERG J,TARDOS É.Maximizing the spread of influence through a social network[A].ACM SIGKDD International Conference on Knowledge Discovery & Data Mining[C].US:ACM,2003.137-146.
[16] LAGNIER C,DENOYER L,et al.Predicting information diffusion in social networks using content and user's profiles[A].European Conference on Information Retrieval[C].Berlin Heidelberg:Springer,2013.74-85.
[17] SAITO K,OHARA K,et al.Learning diffusion probability based on node attributes in social networks[A].International Symposium on Methodologies for Intelligent Systems[C].Berlin Heidelberg:Springer,2011.153-162.
[18] SPIRO E,IRVINE C,et al.Waiting for a retweet:modeling waiting times in information propagation[A].NIPS Workshop of Social Networks and Social Media Conference[C/OL].http://snap.stanford.edu/social2012/papers/spiro-dubois-butts.pdf.2012,12.
[19] 刘瑶,康晓慧,高红,等.基于节点亲密度和度的社会网络社团发现方法[J].计算机研究与发展,2015,52(10):2363-2372.
[20] 李致远,陈汝龙,王汝传.基于兴趣和行为预测的移动社交网络动态资源发现机制[J].通信学报,2016,37(4):34-43. LI Zhi-yuan,CHEN Ru-long,WANG Ru-chuan.Exploiting interests and behavior prediction for dynamic resource discovery in mobile social networking[J].Journal on Communication,2016,37(4):34-43.(in Chinese)
[21] 周东浩,韩文报,王勇军.基于节点和信息特征的社会网络信息传播模型[J].计算机研究与发展,2015,52(1):156-166. ZHOU Dong-hao,HAN Wen-bao,WANG Yong-jun.A fine-grained information diffusion model based on node attributes and content features[J].Journal of Computer Research and Development,2015,52(1):156-166.(in Chinese)
[22] GOYAL A,BONCHI F,LAKSHMANAN L V S.Learning influence probabilities in social networks[A].International Conference on Web Search and Web Data Mining (WSDM)[C].New York,US:ACM,2010.241-250.
[23] AGARWAL A,XIE B,VOVSHA I,et al.Sentiment analysis of Twitter data[A].The Workshop on Languages in Social Media[C].US:Association for Computational Linguistics,2011.30-38.
[24] GIRVAN M,NEWMANM E J.Community structure in social and biological networks[J].Proceedings of the National Academy of Sciences,2002,99(12):7821-7826.
[25] NEWMAN M E J.Analysis of weighted networks[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2004,70(5 Pt 2):056131.