摘要 在频分双工大规模多输入多输出系统中,基于压缩感知的信道状态信息(CSI,channel state information)反馈方法因正确重构CSI小幅度元素的支撑集合造成巨大的反馈开销.为降低基于压缩感知的CSI反馈的开销,提出一种部分支撑集辅助的压缩感知CSI反馈方法.提出方法将CSI的一部分小幅度元素的支撑集与压缩CSI一同反馈回基站.基站无需重构反馈回基站的CSI小幅度元素的支撑集,压缩CSI所需的测量次数(反馈开销)得以极大降低.分析与仿真结果表明,相对于传统的基于CS的CSI反馈方法,提出方法在确保CSI重构精度与可达和速率情况下,能有效降低CSI反馈开销和CSI重构的计算复杂度.
Abstract:In a frequency division duplex (FDD) massive multiple input multiple output (MIMO) system,the compressed sensing (CS)-based channel state information (CSI) feedback methods cause a significant feedback overhead,due to the correct reconstruction of the support-set for the small magnitude elements of CSI.To reduce the feedback overhead,a CS-based CSI feedback scheme assisted by partial support-set is proposed in this paper,where the partial support-set of small magnitude elements and the compressed CSI are fed back to the base station (BS) together.Since the BS does not need to recover the support-set of small magnitude elements,the measurement requirement (i.e.,the feedback overhead) to compress the CSI is greatly reduced.Compared with the conventional CS-based CSI feedback,the analysis and simulation results show that the proposed method can reduce CSI feedback overhead and computation complexity of CSI reconstruction,while guaranteeing the CSI recovery accuracy and achievable sum-rate.
[1] 顾浙骐,张忠培.基于协作多点下行传输的非线性鲁棒预编码[J].电子学报,2016,44(12):2997-3003. GU Zhe-qi,ZHANG Zhong-pei.Nonlinear robust precoding for coordinated multipoint downlink transmission[J].Acta Electronica Sinica,2016,44(12):2997-3003.(in Chinese)
[2] ZHANG Z Y,THE K C,LI K H.Application of compressive sensing to limited feedback strategy in large-scale multiple-input single-output cellular networks[J].IET Commun,2014,8(6):947-955.
[3] SONG J,CHOI J,KIM T,J LOVE D.Advanced quantizer designs for FDD-based FD-MIMO systems using uniform planar arrays[J].IEEE Trans.Signal Process,2018,66(14):3891-3905.
[4] 曹杰,廖勇,王丹,周昕,李瑜锋.基于非理想CSI的下行MU-MIMO鲁棒波束成形[J].电子学报,2016,44(9):2093-2099. CAO Jie,Liao Yong,Wang Dan,Zhou Xin,Li Yu-feng.Robust beamforming for downlink MU-MIMO based on imperfect CSI[J].Acta Electronica Sinica,2016,44(9):2093-2099.(in Chinese)
[5] ONGGOSANUSI E,RAHMAN M,GUO L,et al.Modular and high-resolution channel state information and beam management for 5G new radio[J].IEEE Commun.Mag,2018,56(3):48-55.
[6] JIANG T,SONG M,ZHAO X,LIU X.A codebook-adaptive feedback algorithm for cellular-based positioning[J].IEEE Access,2018,6:32109-32116.
[7] 刘建国,杨绿溪.有限反馈MIMO系统中一种基于双码本的功率分配与预编码方案[J].电子学报,2007,35(6A):78-82. LIU Jian-guo,YANG Lv-xi.Precoding and power allocation based on double codebook in MIMO systems with limited feedback[J].Acta Electronica Sinica,2007,35(6A):78-82.(in Chinese)
[8] SHEN W,DAI L,ZHANG Y,LI J,WANG Z.On the performance of channel statistics-based codebook for massive MIMO channel feedback[J].IEEE Trans.Veh.Technol,2017,66(8):7553-7557.
[9] YOO T,JINDAL N,GOLDSMITH A.Multi-antenna downlink channels with limited feedback and user selection[J].IEEE J.Sel.Areas Commun,2007,25(7):1478-1491.
[10] SHEN W,DAI L,SHI Y,ZHU X,WANG Z.Compressive sensing-based differential channel feedback for massive MIMO[J].Electron Lett,2015,51(22):1824-1826.
[11] GAO Z,DAI L,WANG Z,CHEN S.Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO[J].IEEE Trans.Signal Process,2015,63(23):6169-6183.
[12] JEON Y S,KIM H M,CHO Y S,IM G.Time-domain differential feedback for massive MISO-OFDM systems in correlated channels[J].IEEE Trans.Commun,2016,64(2):630-642.
[13] LU L,LI Y,QIAO D,HAN W.Sparsity-enhancing basis for compressive sensing based channel feedback in massive MIMO systems[A].Proc.IEEE Int.Conf.Global Commu[C],San Diego,CA,Dec.2015.1-6.
[14] SIM M S,PARK J,CHAE C B,HEATH R W.Compressed channel feedback for correlated massive MIMO systems[J].IEEE KICS J.Commun.Netw,2016,18(1):95-104.
[15] ZHANG R,ZHAO H,ZHANG J.Distributed compressed sensing aided sparse channel estimation in FDD massive MIMO system[J].IEEE Access,2018,6:18383-18397.
[16] RAO X,LAU V K N.Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems[J].IEEE Trans.Signal Process,2014,62(12):3261-3271.
[17] JIN Y,KIM Y H,RAO B D.Limits on support recovery of sparse signals via multiple-access communication techniques[J].IEEE Trans.Inf.Theory,2011,57(12):7877-7892.
[18] BLASCO-SERRANO R,ZACHARIAH D,SUNDAM D,THOBABEN R,SKOGLUND M.A measurement rate-MSE tradeoff in compressive sensing through partial support recovery[J].IEEE Trans.Signal Process,2014,62(18):4643-4658.
[19] TROPP J A,GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans.Inf.Theory,2007,53(12):4655-4666.
[20] CAIRE G,SHAMAI S.On the achievable throughput of a multiantenna Gaussian broadcast channel[J].IEEE Trans.Inf.Theory,2003,49(7):1691-1706.
[21] ÖZYURT S,KUCUR O.Zero-forcing beamforming with signal space diversity[J].IEEE Trans.Veh.Technol,2018,67(1):812-816.
[22] GOYAL V K,FLETCHER A K,RANGAN S.Compressive sampling and lossy compression[J].IEEE Signal Process.Mag,2008,25(2):48-52.
[23] NEEDELL D,TROPP J.CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J].Appl.Comput.Harmon.Anal,2009,26(3):301-321.
[24] BARANIUK RG.Compressive sensing[J].IEEE Signal Process.Mag,2007,24(4):118-120.
[25] KUO P H,KUNG H,TING P.Compressive sensing based channel feedback protocols for spatially-correlated massive antenna arrays[A].Proc.IEEE Int.Conf.Wireless Commun.Networking[C].Paris,France,2012,492-497.
[26] ELKHALIL K M,ELTAYEB M E,KAMMOUN A,et al.On the feedback reduction of relay multiuser networks using compressive sensing[J].IEEE Trans.Commun,2016,64(4):1437-1450.
[27] KHAN F.LTE for 4G Mobile Broadband:Air Interface Technologies and Performance[M].Cambridge Univ.Press,2009.
[28] HUANG P,PI Y.A novel MIMO channel state feedback scheme and overhead calculation[J].IEEE Trans.Commun,2018,66(10):4550-4562.