Abstract:Deep neural network models for Uyghur personal pronouns resolution learn semantic information for current anaphora chain,but ignore the long-term effects of single anaphora chain recognition results.This paper proposes a Uyghur personal pronoun anaphora resolution based on deep reinforcement learning.This method defines the anaphora resolution task as the sequential decision process under the reinforcement learning environment,and effectively uses the antecedent information in the previous state to determine the current personal pronoun-candidate antecedent pairs.In this study,we use an overall reward signal optimization strategy,which is more efficient than directly using the loss function heuristic to optimize a specific single decision.Finally,we conduct experiments in the Uyghur dataset.The experimental results show that the F value of this method in the Uyghur personal pronouns resolution task is 85.80%.The experimental results show that the deep reinforcement learning model can significantly improve the performance of the Uyghur personal pronouns resolution.
[1] Zhang R,dos Santos C N,Yasunaga M,et al.Neural coreference resolution with deep biaffine attention by joint mention detection and mention clustering[A].Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics[C].Melbourne:ACL,2018.102-107.
[2] Chen C,Ng V.Chinese zero pronoun resolution with deep neural networks[A].Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics[C].Berlin:ACL,2016.778-788.
[3] Iida R,Torisawa K,Oh J H,et al.Intra-sentential subject zero anaphora resolution using multi-column convolutional neural network[A].Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing[C].Texas:EMNLP,2016.1244-1254.
[4] Nitoń B,Morawiecki P,Ogrodniczuk M.Deep neural networks for coreference resolution for polish[A].Proceedings of the Eleventh International Conference on Language Resources and Evaluation[C].Miyazaki:LREC,2018.
[5] Plu J,Prokofyev R,Tonon A,et al.Sanaphor++:combining deep neural networks with semantics for coreference resolution[A].Proceedings of the Eleventh International Conference on Language Resources and Evaluation[C].Miyazaki:LREC,2018.
[6] Haponchyk I,Moschitti A.A practical perspective on latent structured prediction for coreference resolution[A].Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics[C].Valencia:EACL,2017.143-149.
[7] Li J,Monroe W,Ritter A,et al.Deep reinforcement learning for dialogue generation[A].Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing[C].Austin:EMNLP,2016.1192-1202.
[8] Zhao D,Chen Y,Lv L.Deep reinforcement learning with visual attention for vehicle classification[J].IEEE Transactions on Cognitive and Developmental Systems,2017,9(4):356-367.
[9] Zhang X,Lapata M.Sentence simplification with deep reinforcement learning[A].Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing[C].Copenhagen:EMNLP,2017.584-594.
[10] Soon W M,Ng H T,Lim D C Y.A machine learning approach to coreference resolution of noun phrases[J].Computational Linguistics,2001,27(4):521-544.
[11] Lee K,He L,Lewis M,et al.End-to-end neural coreference resolution[A].Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing[C].Copenhagen:EMNLP,2017.188-197.
[12] Clark K,Manning C D.Deep reinforcement learning for mention-ranking coreference models[A].Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing[C].Austin:EMNLP,2016.2256-2262.
[13] 李冬白,田生伟,禹龙,等.基于深度学习的维吾尔语人称代词指代消解[J].中文信息学报,2017,31(4):80-88. LI Dong-bai,TIAN Sheng-wei,YU Long.Deep learning for pronominal anaphora resolution in Uyghur[J].Journal of Chinese Information Processing,2017,31(4):80-88.(in Chinese)
[14] 田生伟,秦越,禹龙,吐尔根·依布拉音,冯冠军.基于Bi-LSTM的维吾尔语人称代词指代消解[J].电子学报,2018,46(07):1691-1699. TIAN Sheng-wei,QIN Yue,et al.Anaphora resolution of Uyghur personal pronouns based on bi-lstm[J].Acta Electronica Sinica,2018,46(07):1691-1699.(in Chinese)
[15] 李敏,禹龙,田生伟,吐尔根·依布拉音,赵建国.基于深度学习的维吾尔语名词短语指代消解[J].自动化学报,2017,43(11):1984-1992. LI Min,YU Long,et al.Coreference resolution of Uyghur noun phrases based on deep learning[J].Acta Automatica Sinica,2017,43(11):1984-1992.(in Chinese)
[16] Pennington J,Socher R,Manning C.Glove:global vectors for word representation[A].Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing[C].Doha:EMNLP,2014.1532-1543.
[17] Xiong W,Hoang T,Wang W Y.DeepPath:A reinforcement learning method for knowledge graph reasoning[A].Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing[C].Copenhagen:EMNLP,2017.564-573.
[18] Duchi J,Hazan E,Singer Y.Adaptive subgradient methods for online learning and stochastic optimization[J].Journal of Machine Learning Research,2011,12(Jul):2121-2159.
[19] Hinton G E,Srivastava N,Krizhevsky A,et al.Improving Neural Networks by Preventing Co-adaptation of Feature Detectors[DB/OL].arXiv preprint arXiv:1207.0580,2012. >