Abstract:We combine reverse triple I methods with intuitionistic fuzzy set, and investigate intuitionistic fuzzy inference a- reverse triple I methods.The expression form and decomposition form of solutions of intuitionistic fuzzy inference a- reverse triple I methods based on IFMP and IFMT problems are given.Then, similarity between intuitionistic fuzzy sets are defined by biresiduum, the similarity of intuitionistic ?ukasiewicz implication, intuitionistic Gödel implication, intuitionistic Goguen implication, intuitionistic Ro implication are provided, furthermore, their relationship are analysed.Finally, taking similarity on intuitionistic fuzzy sets as perturbation parameters, robustness of intuitionistic fuzzy inferencea-reverse triple I methods are discussed, in particular, for four kinds of residual implications, some results concerning robustness of intuitionistic fuzzy inference a- reverse triple I methods are obtained.
[1] Zadeh L A.Fuzzy sets[J].Information and Control,1965,8(3):338-353.
[2] Zadeh L A.Outline of a new approach to the analysis of complex systems and decision and process[J]. IEEE Transaction on Systems,Man,and Cybernetics,1973,3(1):28-44.
[3] Dubois D,Prade H.Fuzzy Sets in approximate reasoning[J].Fuzzy Sets and Systems,1991,40 (1):143-244.
[4] Zadeh L A.Toward extended fuzzy logic-A first step[J].Fuzzy Sets and Systems,2009,160(21):3175-3181.
[5] Wang G J.Full implicational triple I methods for fuzzy reasoning[J].Science in China(Series E),1999,29(1):43-53.
[6] Song S J, Wu C. Reverse triple I method of fuzzy reasoning[J].Science in China(Series F),2002,45(5):344-364.
[7] Atanassov K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,1986,20(1):87-96.
[8] Liu H W,Wang G J.Multi-criteria decision-making methods based on intuitionistic fuzzy sets[J].European Journal of Operational Research,2007,179(1): 220-233.
[9] Deschrijver G, Cornelis C, Kerre E E.On the representation of intuitionistic fuzzy t-norms and t-conorms[J]. IEEE Transaction on Fuzzy Systems,2004,12(1):45-61.
[10] Cornelis C, Deschrijver G, Keer E E.Implication in intuitionistic fuzzy and interval-valued fuzzy set theory:construction,classsification, application[J]. Internal Journal of Approximate Reasoning,2004,35(1):55-95.
[11] Liu H W,Wang G J.Multi-criteria decision-making methods based on intuitionistic fuzzy sets[J].European Journal of Operational Research,2007,179(1):220-233.
[12] 郑慕聪.剩余型直觉蕴涵算子的统一形式[J].模糊系统与数学,2013,27(2):15-22. Zheng M C.Unified Form of Residual Intuitionistic Fuzzy Implicators[J].Fuzzy Systems and Mathematics,2013,27(2):15-22.(in Chinese)
[13] Zheng Mu cong, Shi Zhong ke, Liu Yan. Triple I methods of approximate reasoning on Atanassov’s intuitionistic fuzzy sets[J].International Journal of Approximate Reasoning,2014,55(6):1369-1382.
[14] 井美,惠小静,王蓉.直觉模糊推理的三I约束算法[J].计算机工程与应用,2018,54(15):53-56. Jing M, Hui X J, Wang R.Triple I restriction methods of intuitionistic fuzzy inference[J].Computer Engineering and Application,2018,54(15):53-56.(in Chinese)
[15] 于祥雨,李得超.直觉模糊推理系统的鲁棒性[J].模糊系统与数学,2014,28(2):111-119. Yu X Y,Li D C.Robustness of atanassov’s intuitionistic fuzzy reasoning system[J].Fuzzy Systems and Mathematics,2014,28(2):111-119.(in Chinese)
[16] 刘岩.几种度量下?ukasiewicz型直觉模糊推理三I算法的性质分析[D].兰州理工大学,2017,1-41. Lui Y.Property analysis of the triple I method for ?ukasiewicz intuitionistic fuzzy reasoning based on several distances[D].Lanzhou University of Technology,2017,1-41.(in Chinese)
[17] 许小芾.直觉模糊推理SIS算法的统一形式及其性质研究[D].甘肃兰州:兰州理工大学,2017,1-41. Xu X F.Research on the unified form and property of the SIS methods for intuitionistic fuzzy reasoning[D].Lanzhou,Gansu:Lanzhou University of Technology,2017,1-41.(in Chinese)
[18] Klement E P, Mesiar R, Pap E.Triangular Norms[M].Dordrecht :Kluwer Academic Publishers.2000.1-387.
[19] 王国俊.非经典数理逻辑与近似推理[M].北京:科学出版社,2008.1-304. XAWang G J. Non-classical Mathematical Logic and Approximate Reasoning[M].Beijing: Science Press,2008.1-304.(in Chinese)
[20] Turunen E.Mathematics Behind Fuzzy Logic[M].Physica-Verlag,Wurzburg,1990.1-201.