Abstract:This paper mainly studies the extended self-similarity of sea clutter frequency spectrum and the application of multi-scale Hurst exponent to target detection within sea clutter.As a generalization of the fractional Brownian motion,the extended self-similar process uses the multi-scale Hurst exponent to describe fractal signals.The multi-scale Hurst exponent can characterize the details of fractal signals in different scales,which makes up for the deficiency of the mono-Hurst exponent that can only describe the whole roughness of fractal signals.Based on real radar data,this paper first studies the extended self-similarity of real sea clutter frequency spectrum and the influencing parameters.Then,the characteristic that the multi-scale Hurst exponent in the optimal frequency scale is relatively sensitive to the target is utilized for designing CFAR detection algorithm for target detection within sea clutter.The analytic results of real data show that the multi-scale Hurst exponent of sea clutter frequency spectrum performs better in separating target from sea clutter than the mono-Hurst exponent and the multi-scale Hurst exponent in time domain.Additionally,because Fourier transform can promote the signal-to-clutter ratio effectively,the proposed detection method has the potential for detecting weak moving targets within sea clutter.
刘宁波, 关键, 黄勇, 何友. 基于频域多尺度Hurst指数的海杂波中目标检测方法[J]. 电子学报, 2013, 41(3): 424-431.
LIU Ning-bo, GUAN Jian, HUANG Yong, HE You. Target Detection Within Sea Clutter Based on Multi-Scale Hurst Exponent in Frequency Domain. Chinese Journal of Electronics, 2013, 41(3): 424-431.
[1] Vicen-Bueno R,et al.Coherent detection of Swerling 0 targets in sea-ice Weibull-distributed clutter using neural networks [J].IEEE Trans on IM,2010,59(12):3139-3151. [2] Carretero-Moya J,et al.Statistical analysis of a high-resolution sea-clutter database [J].IEEE Trans on GRS,2010,48(4):2024-2037. [3] Brekke E,et al.Tracking small targets in heavy-tailed clutter using amplitude information [J].IEEE J Oceanic Engineering,2010,35(2):314-329. [4] Ward K D,et al.Sea Clutter:Scattering,The K Distribution and Radar Performance [M].London:Institution of Engineering & Technology,2006:109-307. [5] Liao M S,et al.Using SAR Images to Detect Ships From Sea Clutter [J].IEEE GRSL,2008,5(2):194-198. [6] 陈多芳,陈伯孝,等.岸-舰双基地波超视距雷达图像域海杂波抑制方法[J].电子学报,2010,38(2):387-392. Chen Duofang,Chen Baixiao,et al.Sea Clutter Suppression in image domain for coast-ship bistatic SWOTHR[J].Acta Electronica Sinica,2010,38(2):387-392.(in Chinese) [7] 何友,关键,等.雷达目标检测与恒虚警处理(第二版)[M].北京:清华大学出版社,2011.36-263. [8] 陈建军,黄孟俊,等.海杂波下的双门限恒虚警目标检测新方法[J].电子学报,2011,39(9):2135-2141. Chen Jianjun,Huang Mengjun,et al.A novel method for CFAR detector with bi-thresholds in sea clutter [J].Acta Electronica Sinica,2011,39(9):2135-2141.(in Chinese) [9] 关键,刘宁波,等.雷达目标检测的分形理论及应用[M].北京:电子工业出版社,2011.1-11. [10] Savaidis S,Frangos Y.Scattering from fractally corrugated surface:An exact approach [J].Optics Letters,1995,20(23):2357-2359. [11] Lo T,Leung H,et al.Fractal characterisation of sea-scattered signals and detection of sea-surface targets [J].IEE Proc-F,1993,140(4):243-250. [12] Salmasi M,et al.Design and analysis of fractal detector for high resolution radars [J].Chaos,Solitons & Fractals,2009,40(5):2133-2145. [13] Kaplan L M,et al.Extending self-similarity for fractional brownian motion [J].IEEE Trans on SP,1994,42(12):3526-3530. [14] Kaplan L M.Extended fractal analysis for texture classification and segmentation [J].IEEE Trans on IP,1999,8(11):1572-1585. [15] Kaplan L M.Improved SAR target detection via extended fractal features [J].IEEE Trans on AES,2001,37(2):436-451. [16] 袁湛,何友,等.基于改进扩展分形特征的SAR图像目标检测方法[J].宇航学报,2011,32(6):1379-1384. Yuan Zhan,He You,et al.Improved extended fractal feature-based target detection in SAR imagery [J].Journal of Astronautics,2011,32(6):1379-1384. [17] 李秀友,关键,等.海杂波中基于扩展分形的目标检测方法[J].火控雷达技术,2008,37(2):10-13,38. Li Xiuyou,Guan Jian,et al.Methods for detecting targets in sea clutter based on extended fractal[J].Fire Control Radar Technology,2008,37(2):10-13,38.(in Chinese) [18] Mandelbrot B B.The Fractal Geometry of Nature [M].New York:WH Freeman,1982.1-63. [19] Decreusefond L,et al.Stochastic analysis of the fractional Brownian motion [R].America:American Mathematical Society 1991 subject classifications,2007:1-12. [20] Drosopoulos A.Description of the OHGR database [R].Ottawa:Defence Research Establishment,Tech.Note No.94-14,1994. [21] Kaplan L M.Fractal Signal Modeling:Theory,Algorithms,and Applications [D].California:University of Southern California,1994:12-38. [22] Kaplan L M,et al.Texture roughness analysis and synthesis via extended self-similar (ESS) model [J].IEEE Trans on PAMI,1995,17(11):1043-1056. [23] 孟华东,等.与初始噪声分布无关的恒虚警处理器[J].清华大学学报(自然科学版),2001,41(7):51-53,68. Meng Huadong,Wang Xiqin,et al.CFAR processor independent of original noise distribution[J].J Tsinghua Univ (Sci & Tech),2001,41(7):51-53,68.(in Chinese)