Fast Detection of LFM Signal Based on FRFT and Sub-Nyquist Sampling
QIU Zhao-yang1, CHEN Rong1,2, WANG Yi-ming1,2
1. School of Electronics and Information Engineering,Soochow University,Suzhou,Jiangsu 215006,China; 2. National Laboratory of Information Control Technology for Communication System,Jiaxing,Zhejiang 314001,China
摘要 采用分数阶Fourier变换对线性调频信号(Linear Frequency Modulation,LFM)进行检测与参数估计时,由于信号的特征未知,需要运用二维搜索方法确定分数阶Fourier变换的最佳旋转角度.该方法运算量巨大.为减少运算量,本文推导了欠采样前后LFM信号的分数阶Fourier变换最佳能量聚集旋转角度关系,证明了无噪LFM信号的调频率估计可以完全不受Nyquist采样定理的限制;通过推导分析欠采样含噪LFM信号在最佳分数阶Fourier域的信噪比,给出了欠采样倍数M对LFM信号检测的影响及其选取原则;最终提出一种基于欠采样理论的LFM信号快速检测方法.实验结果表明,当M选取合适时,利用原始信号的欠采样样本即可对LFM信号实现有效检测,快速确定其调频率.
Abstract:The relationship between the optimal rotation angle of fractional Fourier transform(FRFT)of the undersampled signal and that of the original signal was studied.It was proved that the chirp-rate of noiseless linear frequency modulation(LFM)signal can be estimated correctly even though the signal was undersampled.By deducing and analyzing the signal to noise ratio(SNR)in the optimal fractional Fourier domain,the impact of subsampling rate on detection of LFM signal was discussed.Finally,a novel method was proposed to realize fast detection of LFM signal.Simulation results show that when the subsampling rate is set properly,the detection and parameter estimation of LFM signal can be realized rapidly by applying FRFT to the undersampled signal.
仇兆炀, 陈蓉, 汪一鸣. 基于FRFT的线性调频信号欠采样快速检测方法[J]. 电子学报, 2012, 40(11): 2165-2170.
QIU Zhao-yang, CHEN Rong, WANG Yi-ming. Fast Detection of LFM Signal Based on FRFT and Sub-Nyquist Sampling. Chinese Journal of Electronics, 2012, 40(11): 2165-2170.
[1] 谢德光,张贤达.基于分数阶Fourier变换的雷达目标识别[J].清华大学学报,2010,50(4):485-488. Xie De-guang,Zhang Xian-da.Radar target recognition based on fractional Fourier transform[J].Journal of Tsinghua University,2010,50(4):485-488.(in Chinese) [2] 齐林,陶然,等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学E辑,2003,33(8):349-359. [3] Tao Ran,Deng Bing,Wang Yue.Research progress of the fractional fourier transform in signal processing[J].Science in China F:Information Science,2006,49(1):1-25. [4] 殷敬伟,惠俊英,蔡平,郭龙祥.分数阶Fourier变换在深海远程水声通信中的应用[J].电子学报,2007,35(8):1499-1504. Yin Jing-wei,Hui Jun-ying,Cai Ping,Guo Long-xiang.Application of fractional fourier transform in long range deep-water acoustic communication[J].Acta Electronica Sinica,2007,35(8):1499-1504.(in Chinese) [5] 杨小明,陶然.基于分数阶傅里叶变换的线性调频信号二维波达方向估计[J].电子学报,2008,36(9):1737-1740. Yang Xiao-ming,Tao Ran.2-D DOA estimation of LFM signals based on fractional fourier transform[J].Acta Electronica Sinica,2008,36(9):1737-1740.(in Chinese) [6] H M Ozaktas,Orhan Arikan,et al.Digital computation of the fractional fourier transform[J].IEEE Trans Signal Processing,1996,44(9):2141-2150. [7] Erseghe T,Kraniauskas P,Cariolaro G.Unified fractional Fourier transform[J].IEEE Tran Signal Process,1999,47(12):3419-3423. [8] 赵兴浩,邓兵,陶然.分数阶傅里叶变换数值计算中的量纲归一化[J].北京理工大学学报,2005,25(4):360-364. Zhao Xing-hao,Deng Bing,Tao Ran.Dimensional normalization in the digital computation of the fractional fourier transform[J].Journal of Beijing Institute of Technology,2005,25(4):360-364.(in Chinese) [9] 陶然,邓兵,王越.分数阶傅里叶变换及其应用[M].北京:清华大学出版社,2009:105-106. Tao Ran,Deng Bing,Wang Yue.Fractional Fourier Transform and Its Applications .Beijing:Tsinghua University Press,2009:105-106.(in Chinese) [10] 刘建成,刘忠,王雪松,肖顺平,王国玉.高斯白噪声背景下的LFM信号的分数阶Fourier域信噪比分析[J].电子与信息学报,2007,29(10):2337-2340. Liu Jian-cheng,Liu Zhong,Wang Xue-song,Xiao Shun-ping,Wang Guo-yu.SNR analysis of LFM signal with gaussian white noise in fractional fourier transform domain[J].Journal of Electronics & Information Technology,2007,29(10):2337-2340.(in Chinese) [11] S Barbarossa.Analysis of multicomponent LFM signals by a combined wigner-hough transform[J].IEEE Transactions on Signal Processing,1995,43(6):1511-1515.