Multi-objective cellular genetic algorithm has proven to be effective in solving bi-objective MOPs.However, preliminary experiments have revealed that it has difficulties when dealing with three-objective MOPs(the DTLZ problem family).In order to enhance the performance, the orthogonal design idea is introduced and a new cellular genetic algorithm called cellular genetic algorithm for multi-objective optimization based on orthogonal design is proposed.In the progress of iteration of improved algorithm, the parent individuals are divided into many segments, and then several offsprings are produced by recombining the segments according to the orthogonal table, finally, choose the individuals which have better fitness value from the offsprings to the next population.The experiments show that the performance is improved after introducing the orthogonal design.Compared with several state-of-the-art multi-objective metaheuristics, the obtained results show that the improved algorithm is competitive for DTLZ problem family, too.
张屹, 万兴余, 郑小东, 孙莉莉. 基于正交设计的元胞多目标遗传算法[J]. 电子学报, 2016, 44(1): 87-94.
ZHANG Yi, WAN Xing-yu, ZHENG Xiao-dong, SUN Li-li. Cellular Genetic Algorithm for Multiobjective Optimization Based on Orthogonal Design. Chinese Journal of Electronics, 2016, 44(1): 87-94.
[1] 巩敦卫, 季新芳, 孙晓燕.基于集合的高维多目标优化问题的进化算法[J].电子学报, 2014, 42(1):77-83. Gong Dun-wei, Ji Xin-fang, Sun Xiao-yan.Solving many-objective optimization problems using set-based evolutionary algorithms[J].Acta Electronica Sinica, 2014, 42(1):77-83.(in Chinese)
[2] 李坤, 黎明, 陈昊.进化算法的困难性理论研究进展[J].电子学报, 2014, 42(2):383-390. Li Kun, Li Ming, Chen Hao.Research progress of hardness theories on evolutionary algorithm[J].Acta Electronica Sinica, 2014, 42(2):383-390.(in Chinese)
[3] Deb K, Pratap A, Agarwal S, et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[4] Knowles J, Corne D.The pareto archived evolution strategy:A newbaseline algorithmfor pareto multiobjective optimization[A].Proceedings of the 1999 Congress on Evolutionary Computation[C].USA:IEEE, 1999, 98-105.
[5] Bleuler S, Brack M, Thiele L, et al.Multiobjective genetic programming:Reducing bloat using SPEA2[A].Proceedings of the 2001 Congress on Evolutionary Computation[C].USA:IEEE, 2001.536-543.
[6] Zhang Q, Li H.MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J].IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
[7] Nebro A J, Durillo J J, Luna F, et al.Mocell:A cellular genetic algorithm for multiobjective optimization[J].International Journal of Intelligent Systems, 2009, 24(7):726-746.
[8] Alba E, Dorronsoro B.The exploration/exploitation tradeoff in dynamic cellular genetic algorithms[J].IEEE Transactions on Evolutionary Computation, 2005, 9(2):126-142.
[9] Kirley M.MEA:A metapopulation evolutionary algorithm for multi-objective optimisation problems[A].Proceedings of the 2001 Congress on Evolutionary Computation[C].USA:IEEE, 2001.949-956.
[10] Alba E, Dorronsoro B, Luna F, et al.A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs[J].Computer Communications, 2007, 30(4):685-697.
[11] Dorronsoro B, Alba E, Giacobini M, et al.The influence of grid shape and asynchronicity on cellular evolutionary algorithms[A].Proceedings of the Congress on Evolutionary Computation[C].USA:IEEE, 2004.2152-2158.
[12] Durillo J J, Nebro A J, Luna F, et al.Solving three-objective optimization problems using a new hybrid cellular genetic algorithm[A].Parallel Problem Solving from Nature PPSN X[M].Berlin Heidelberg:Springer, 2008.661-670.
[13] Al-Naqi A, Erdogan A T, Arslan T, et al.Balancing exploration and exploitation in an adaptive three-dimensional cellular genetic algorithm via a probabilistic selection operator[A].Proceedings of the Conference on Adaptive Hardware and Systems (AHS)[C].USA:IEEE, 2010.258-264.
[14] Gong W, Cai Z, Jiang L.Enhancing the performance of differential evolution using orthogonal design method[J].Applied Mathematics and Computation, 2008, 206(1):56-69.
[15] Leung Y W, Wang Y.An orthogonal genetic algorithm with quantization for global numerical optimization[J].IEEE Transactions on Evolutionary Computation, 2001, 5(1):41-53.
[16] Zeng S Y, Kang L S, Ding L X.An orthogonal multi-objective evolutionary algorithmfor multi-objective optimization problems with constraints[J].Evolutionary Computation, 2004, 12(1):77-98.
[17] Zhang Q, Leung Y W.An orthogonal genetic algorithm for multimedia multicast routing[J].IEEE Transactions on Evolutionary Computation, 1999, 3(1):53-62.
[18] Wang Y, Liu H, Cai Z, et al.An orthogonal design based constrained evolutionary optimization algorithm[J].Engineering Optimization, 2007, 39(6):715-736.
[19] Wang Y, Dang C.An evolutionary algorithm for global optimization based on level-set evolution and Latin squares[J].IEEE Transactions on Evolutionary Computation, 2007, 11(5):579-595.
[20] Wang Y, Cai Z, Zhang Q.Enhancing the search ability of differential evolution through orthogonal crossover[J].Information Sciences, 2012, 185(1):153-177.
[21] Zitzler E, Deb K, Thiele L.Comparison of multiobjective evolutionary algorithms:Empirical results[J].Evolutionary Computation, 2000, 8(2):173-195.
[22] Huband S, Barone L, While L, et al.A scalable multi-objective test problem toolkit[A].Evolutionary Multi-Criterion Optimization[M].Berlin Heidelberg:Springer, 2005.280-295.
[23] Deb K, Thiele L, Laumanns M, et al.Scalable multi-objective optimization test problems[A].Proceedings of the Congress on Evolutionary Computation[C].Honolulu, USA:IEEE, 2002.825-830.
[24] 李密青, 郑金华.一种多目标进化算法解集分布广度评价方法[J].计算机学报, 2011, 34(4):647-663. Li Mi-qing, Zheng Jin-hua.An indicator for assessing the spread of solutions inmulti-objective evolutionary algorithm[J].Chinese Journal of Computers, 2011, 34(4):647-663.(in Chinese)
[25] Zitzler E, Thiele L.Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach[J].Evolutionary Computation, 1999, 3(4):257-271.
[26] Van Veldhuizen D A, Lamont G B.Multiobjective Evolutionary Algorithm Research:A History and Analysis (Technical Report TR-98-03, Department of Electrical and Computer Engineering)[R].Wright-Patterson AFB, Ohio:Graduate School of Engineering, Air Force Institute of Technology, 1998.