Due to the nonlinear ill-posing characteristic of image degradation caused by blur and noise,image restoration is generally difficult.To improve image quality,orthogonal wavelet was taken as sparse basis and the sparsity of wavelet coefficients as prior.By constructing a convex function and minimizing this function,we obtained the recovered image.The minimization problem was transferred into a proximal operator which is solved by the fixed point theory.We proved that the optimal solution can be obtained through repeatedly iterating an analytical formula.The construction process,convergence rate and complexity of the method were discussed,and an accelerated algorithm was presented.Simulation results indicate that our method can remove blur and noise,and keep detail information meanwhile.
王斌, 胡辽林, 曹京京, 薛瑞洋, 刘光飞. 基于小波域稀疏最优的图像修复方法[J]. 电子学报, 2016, 44(3): 600-606.
WANG Bin, HU Liao-lin, CAO Jing-jing, XUE Rui-yang, LIU Guang-fei. Image Restoration Based on Sparse-Optimal Strategy in Wavelet Domain. Chinese Journal of Electronics, 2016, 44(3): 600-606.
[1] RAM I,COHEN I,ELAD M.Patch-ordering-based wavelet frame its use in inverse problem[J]. IEEE Transactions on Image Processing,2014,23(7):2779-2792.
[2] ZHANG Yan,HIRAKAWA K.Blur processing using double discrete wavelet transform[A]. Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition[C]. Portland,Oregon,USA:IEEE,2013.1091-1098.
[3] LIU Qie-gen,LIANG Dong,SONG Ying,LUO Jian-hua,ZHU Yue-min,LI Wen-shu.Augmented lagrangian-based sparse representation method with dictionary updating for image deblurring[J]. Siam Journal on Imaging Sciences,2013,6(3):1689-1718.
[4] BECK A,TEBOULLE M.Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing,2009,18(11):2419-2434.
[5] XU Li,ZHENG Shi-cheng,JIA Jia-ya.Unnatural l0 sparse representation for natural image deblurring[A]. Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition[C]. Portland,Oregon,USA:IEEE,2013.1107-1114.
[6] LEFKIMMIATIS S,BOURQUARD A,UNSER M.Hessian-based norm regularization for image restoration with biomedical applications[J]. IEEE Transactions on Image Processing,2012,21(3):983-995.
[7] 王静,吕科,何宁,王茜.基于分裂Bregman方法的全变差图像去模糊[J]. 电子学报,2012,40(8):1503-1508. WANG Jing,LV Ke,HE Ning,WANG Qian.Total variation image deblurring based on split Bregman method[J]. Acta Electronica Sinica,2012,40(8):1503-1508.(in Chinese)
[8] 徐焕宇,孙权森,李大禹,宣丽.基于投影的稀疏表示与非局部正则化图像复原方法[J]. 电子学报,2013,2014,42(7):1299-1304. XU Huan-yu,SUN Quan-sen,LI Da-yu,XUAN Li.Projection-based image restoration via sparse representation and non-local regularization[J]. Acta Electronica Sinica,2014,42(7):1299-1304.(in Chinese)
[9] LI Qia,MICCHELLI C A,SHEN Li-xin,XU Yue-sheng.A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV de-noising models[J]. Inverse Problem,2012,28(9):095003.
[10] FIGUEIREDO M A,NOWAK R,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J]. IEEE Journal on Selected Topics Signal Process,2007(1):586-597.
[11] BIOUCAS-DIAS J M,FIGUEIREDO M A.A new twist:two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing,2007,16(12):2992-3004.
[12] AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A.Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing,2010,19(9):2345-2356.
[13] DONOHO D.For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics,2006,59(6):797-829.
[14] MOREAU J J.Proximité et dualité dans un espace hilbertien[J]. Bulletin de la Société Mathématique de France,1965,93:273-299.
[15] BECK A,TEBOULLE M.A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences,2009,2 (1):183-202.
[16] FIGUEIREDO M A,NOWAK R,WRIGHT S J.Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems[J]. IEEE Journal on Selected Topics Signal Process,2007,1(4):586-597.
[17] PORTILLA J.Image restoration through l0 analysis-based sparse optimization in tight frames[A]. Proceedings of the 16th IEEE International Conference on Image Processing[C]. Cairo,Egypt:IEEE,2009.3909-3912.
[18] MICHAELI T,SIGALOV,ELDAR Y C.Partially linear estimation with application to sparse signal recovery from measurement pairs[J]. IEEE Transactions on Signal Processing,2012,60(5):2125-2137.