The paper proposes a non-parametric moving target detection algorithm based on sparse representation residuals error.In order to achieve precise motion target detection,we assume that the foreground change can be seen as sparse residuals compared with the static background.First of all,we use first n frames of the video to initialize the sparse representation dictionary.It will be applied to reconstruct the subsequent frame,extract frame residuals of every image,and then extract binary foreground images combining with the pixel-based global threshold value matrix.Furthermore,we remove ghost area on the basis of the foreground and edge regions.Finally,using the incremental PCA(Principal Component Analysis)and the idea of keep and update,we renew the above background model.A set of experiments are conducted on the shadow sets of changedetection.net using global update and residual error calculation method,and the result shows that the algorithm is an effective and efficient way to adapt to changes in the shadow of a static scene because of the changes of light.What is more,as to the small amplitude changes of the static scene and camera shake problems,it can also be a good solution.
蒋建国, 金玉龙, 齐美彬, 詹曙. 基于稀疏表达残差的自然场景运动目标检测[J]. 电子学报, 2015, 43(9): 1738-1744.
JIANG Jian-guo, JIN Yu-long, QI Mei-bin, ZHAN Shu. Moving Target Detection in Natural Scene Based on Sparse Representation of Residuals. Chinese Journal of Electronics, 2015, 43(9): 1738-1744.
[1] Barnich O,Van Droogenbroeck M.Vibe:a powerful random technique to estimate the background in video sequences[A].IEEE International Conference on Acoustics,Speech and Signal Processing[C].Taipei:IEEE,2009.945-948.
[2] Van Droogenbroeck M,Paquot O.Background subtraction:Experiments and Improvements for ViBe[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[C].Providence,RI:IEEE,2012.32-37.
[3] Bouwmans T,El Baf F,Vachon B.Statistical background modeling for foreground detection:A survey[J].Handbook of Pattern Recognition and Computer Vision,2010,4(3):181-199.
[4] Hofmann M,Tiefenbacher P,Rigoll G.Background segmentation with feedback:The pxel-based adaptive segmenter[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[C].Providence,RI:IEEE,2012.38-43.
[5] Morde A,Ma X,Guler S.Learning a background model for change detection[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[C].Providence,RI:IEEE,2012.15-20.
[6] Zhao C,Wang X,Cham W-K.Background subtraction via robust dictionary learning [J].EURASIP Journal on Image and Video Processing,2011,2011(2):1-12.
[7] Cewu Lu,Jianping Shi,Jiaya Jia.Online robust dictionary learning[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Portland,OR:IEEE,2013.415-422.
[8] Wright J,Ma Y,Maral J,et al.Sparse representation for computer vision and pattern recognition[J].Proceedings of the IEEE,2010,98(6):1031-1044.
[9] 胡正平,李静.基于低秩子空间恢复的的联合稀疏表示人脸识别算法[J].电子学报,2013,41(5):987-991. HU Zheng-ping,LI Jing.Face rgcognition of joint sparse representation based on low-rank subspace recov-ery[J].Acta Electronica Sinica,2013,41(5):987-991.( in Chinese)
[10] Wang D,Lu H,Yang M-H.Online object tracking with sparse prototypes[J].IEEE Transactions on Image Processing,2013,22(1):314.325.
[11] 何志勇,孙立宁,陈立国.Otsu准则下分割阈值的快速计算[J].电子学报,2013,41(2):267-272. HE Zhi-yong,SUN Li-ning,CHEN Li-guo.Fast computation of threahold based onotsu criterion[J].Acta Electronica Sinica,2013,41(2):267-272.( in Chinese)
[12] Ross D,Lim J,Lin R-S,et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision,2008,77(1-3):125-141.
[13] Goyette N,Jodoin,P-M Porikli F,et al.Changedetecti-on.net:A new change detection benchmark dataset[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[C].Providence,RI:IEEE,2012.1-8.
[14] Schick A,Bäuml M,Stiefelhagen R.Improving foreground segmentations with probabilistic superpixel markov random fields[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[C].Providence,RI:IEEE,2012.27-31.
[15] Maddalena L,Petrosino A.The SOBS algorithm:What are the limits?[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops[C].Providence,RI:IEEE,2012.21-26.
[16] Zivkovic Z.Improved adaptive Gaussian mixture model for background subtraction[A].Proceedings of the IEEE International Conference on Pattern Recognition[C].Cambridge:IEEE,2004.28-31.
[17] Mairal J,Bach F,Ponce J,Sapiro G.Online learning for matrix factorization and sparse coding[J].The Journal of Machine Learning Research,2010,11(3):19-60.