Blurry image can be represented as the convolution of a latent image and a blur kernel, so it is an ill-posed problem to solve the kernel and the latent image inversely from a single blurry image.The most effective way to solving ill-posed problem is using cost function with priori term.For blind image deblurring problem, we propose a ratio of convex norm to concave norm as a regularization priori term, which has more sparse representation ability.When solving the model by variable splitting method, we propose L1 norm fidelity term to update high-frequency information of the latent image.At the stage of updating the blurring kernel, we propose a linear increasing weight parameter to estimate the blurring kernel gradually by multi-scale approach from coarse to fine.After obtaining the blur kernel, we use a closed threshold formula to estimate the latent image.This method can obtain high-quality image efficiently.The experimental results demonstrate the effectiveness of the model and the rapidity of the algorithm.
余义斌, 彭念, 甘俊英. 凹凸范数比值正则化的快速图像盲去模糊[J]. 电子学报, 2016, 44(5): 1168-1173.
YU Yi-bin, PENG Nian, GAN Jun-ying. Fast Blind Image Deblurring Using Ratio of Concave Norm to Convex Norm Regularization. Chinese Journal of Electronics, 2016, 44(5): 1168-1173.
[1] Helstrom C W.Image restoration by the method of least squares[J].Journal of the Optical Society of America (JOSA),1967,57(3):297-303.
[2] Richardson W H.Bayesian-based iterative method of image restoration[J].Journal of the Optical Society of America (JOSA),1972,62(1):55-59.
[3] Yuan L,Sun J,Quan,L,et al.Progressive inter-scale and intra-scale non-blind image deconvolution[J].ACM Transactions on Graphics (TOG),2008,27(3):74-83.
[4] Krishnan D,Tay T,Fergus R.Blind deconvolution using a normalized sparsity measure[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Proceedings[C].Colorado:IEEE,2011:233-240.
[5] Cao W F,Sun J,Xu Z B.Fast image deconvolution using closed-form thresholding formulas of Lq(q=1/2,2/3) regularization[J].Journal of Visual Communication and Image Representation,2013,24(1):31-41.
[6] Zuo W M,Meng D Y,Zhang L,et al.A generalized iterated shrinkage algorithm for non-convex sparse coding[A].IEEE international conference on computer vision (ICCV) Proceedings[C].Sydney:IEEE,2013:217-224.
[7] Gong P G,Zhang C S,Lu Z S,et al.A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems[EB/OL].http://arxiv.org/abs/1303.4434,2013-03-01.
[8] Cho S,Wang J,Lee S.Handling outliers in non-blind image deconvolution[A].IEEE International Conference on Computer Vision (ICCV) Proceedings[C].Barcelona:IEEE,2011:495-502.
[9] Schmidt U,Rother C,Nowozin S,et al.Discriminative non-blind deblurring[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Proceedings[C].Portland:IEEE,2013:604-611.
[10] Levin A,Weiss Y,Durand F,et al.Understanding and evaluating blind deconvolution algorithms[A].IEEE international conference on computer vision (CVPR),Proceedings[C].Miami:IEEE,2009:1964-1971.
[11] Cai J F,Ji H,Liu C,et al.Blind motion deblurring from a single image using sparse approximation[A].IEEE international conference on computer vision (CVPR) Proceedings[C].Miami:IEEE,2009:104-111.
[12] Krishnan D,Fergus R.Fast Image Deconvolution using Hyper-Laplacian Priors[A].Advances in Neural Information Processing Systems (NIPS) Proceedings[C].Whistler:MIT Press,2009,22:1-9.
[13] Beck A,Teboulle M.A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J].SIAM Journal on Imaging Sciences,2009,2(1):183-202.
[14] Levin A,Fergus R,Durand F,et al.Image and depth from a conventional camera with a coded aperture[J].ACM Transactions on Graphics (TOG),2007,26(3):70-79.
[15] Xu Z B.Data modeling:Visual psychology approach and L1/2 regularization theory[A].International Congress of Mathematicians (ICM) Proceedings[C].Hyderabad:International Mathematical Union,2010:3151-3184.