PVC Recognition Algorithm Based on Ensemble Learning
ZHOU Fei-yan1,2, JIN Lin-peng1,2, DONG Jun1
1. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
In order to improve the recognition performance of premature ventricular contraction (PVC),this paper reports an algorithm based on ensemble learning.First,the tow-lead ECG signals from the MIT-BIH Arrhythmia database are classified into PVC and non PVC beats using lead convolutional neural network (LCNN) classifier.Then the results are fused with some rules.The accuracy,sensitivity and specificity of the proposed algorithm are 99.91%,98.76% and 99.97%,respectively,which are better than that of other existing algorithms for PVC beats classification.In addition,this paper realizes an inter-patient PVC recognition experiment by combining LCNN and diagnostic rules for clinical application.The effectiveness of the proposed algorithm has been confirmed by the accuracy (97.87%),sensitivity (87.94%) and specificity (98.02%) with the data set over 140000 ECG records.
[1] KHAZAEE Ali.Combining SVM and PSO for PVC detection[J].International Journal of Advances in Engineering Sciences,2013,3(4):1-5.
[2] HUANG Dong,LIAO Zhengquan,LI Changbin,et al.ECG PVC classification algorithm based on fusion SVM and wavelet transform[J].International Journal of Signal Processing,Image Processing and Pattern Recognition,2015,8(1):193-201.
[3] INAN O T,GIOVANGRANDI L,KOVACS G T A.Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features[J].IEEE Transactions on Biomedical Engineering,2006,53(12):2507-2515.
[4] MITTAL Ankita,AHLAWAT Meena.Detection of cardiac arrhythmias using different neural networks:a review[J].International Journal of Advanced Research in Computer and Communication Engineering,2014,3(6):6992-6995.
[5] 孟兆辉,张永红,白净.模糊算法在心律失常病类判别中的应用[J].电子学报,2001,29(9):1246-1248. MENG Zhaohui,ZHANG Yonghong,BAI Jing.A fuzzy method for classification of arrhythmias[J].Acta Electronica Sinica,2001,29(9):1246-1248.(in Chinese)
[6] LEK-UTHAI Apiwat,ITTATIRUT Supat,TEERAMONGKONRASMEE Arporn.Algorithm development for real-time detection of premature ventricular contraction[A].TENCON 2014-2014 IEEE Region 10 Conference[C].Bangkok:IEEE,2014:1-5.
[7] KANWAR Geeta,DEWANGAN Naveen Kumar,DEWANGAN Kiran.A review:detection of premature ventricular contraction beat of ECG[J].International Journal of Advanced Research in Electrical,Electronics and Instrumentation Engineering,2015,4(2):939-942.
[8] YE Can,KUMAR B V K Vijaya,COIMBRA Miguel Tavares.Heartbeat classification using morphological and dynamic features of ECG signals[J].IEEE Transactions on Biomedical Engineering,2012,59(10):2930-2941.
[9] Association for the Advancement of Medical Instrumentation.ANSI/AAMI EC57:2012 Standard:Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms[S].USA:AAMI Press,2012.
[10] 金林鹏,董军.面向临床心电图分析的深层学习算法研究[J].中国科学:信息科学,2015,45(3):398-416. JIN Linpeng,DONG Jun.Deep learning research on clinical electrocardiogram analysis[J].Science China:Information Sciences,2015,45(3):398-416.(in Chinese)
[11] AHLSTROM M L,TOMPKINS W J.Digital filters for real-time ECG signal processing using microprocessors[J].IEEE Transactions on Biomedical Engineering,1985,32(9):708-713.
[12] 高清维,李海鹰,庄镇泉,等.基于平稳小波变换的心电信号噪声消除方法[J].电子学报,2003,31(2):238-240. GAO Qingwei,LI Haiying,ZHUANG Zhenquan,et al.De-noising of ECG signal based on stationary wavelet transform[J].Acta Electronica Sinica,2003,31(2):238-240.(in Chinese)
[13] 杨向林,严洪,许志,等.基于Hilbert-Huang变换的ECG消噪[J].电子学报,2011,39(4):819-824. YANG Xianglin,YAN Hong,XU Zhi,et al.ECG de-noising based on Hilbert-Huang transform[J].Acta Electronica Sinica,2011,39(4):819-824.(in Chinese)
[14] VALENTINI Giorgio,MASULLI Francesco.Ensembles of learning machines[A].Proceedings of the 13th Italian Workshop on Neural Nets-revised Papers[C].London:Springer Berlin Heidelberg,2002:3-20.
[15] ZHOU Zhi-Hua,WU Jianxin,TANG Wei.Ensembling neural networks:many could be better than all[J].Artificial Intelligence,2002,137:239-263.
[16] KITTLER Josef,HATEF Mohamad,DUIN Robert P W,et al.On combining classifiers[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(3):226-238.
[17] 徐拥军,钟玉秋,曾文斌.一种基于心电向量的心电波形特征点定位方法[P].中国专利:201410068351.6,2014-02-27.
[18] MIT-BIH Arrhythmia Database[EB/OL].http://www.physionet.org/physiobank/database/mitdb/.2015.6[2015-09-25].
[19] ZHANG Jiawei,LIU Xia,DONG Jun.CCDD:an enhanced standard ECG database with its management and annotation tools[J].International Journal on Article Intelligence Tools,2012,21(5):1-26.
[20] DONG Jun,ZHANG Jiawei,ZHU Honghai,et al.Wearable ECG monitors and its remote diagnosis service platform[J].IEEE Intelligent Systems,2012,27:36-43.
[21] 朱洪海.心电图自动识别的关键算法及多体征监护系统研制[D].北京:中国科学院大学,2013. ZHU Honghai.Key algorithms on Computer-Aided Electrocardiogram Analysis and Development of Remote Multi-signs Monitoring System[D].Beijing:University of Chinese Academy of Sciences,2013.(in Chinese)
[22] 王丽苹.融合领域知识的心电图分类方法研究[D].上海:华东师范大学,2012. WANG Liping.Study on Approach of ECG Classification with Domain Knowledge[D].Shanghai:East China Normal University,2012.(in Chinese)
[23] HAKACOVA Nina,TRAGARDH-JOHANSSON Elin,WAGNER Galen S,et al.Computer-based rhythm diagnosis and its possible influence on nonexpert electrocardiogram readers[J].Journal of Electrocardiology,2012,45(1):18-22.