Mining Sentiment for Web Short Texts Based on TSCM Model
HUANG Fa-liang1, LI Chao-xiong1, YUAN Chang-an2, WANG Yan1, YAO Zhi-qiang1
1. Faculty of Software, Fujian Normal University, Fuzhou, Fujian 350007, China; 2. School of Computer and Information Engineering, Guangxi Teachers Education University, Nanning, Guangxi 530023, China
Abstract:For sentiment analysis of web short texts,a topic sentiment combining model (TSCM) is proposed based on LDA and web review behavioral theory,which is founded on the assumption that topic distribution of each sentence in a review is unique and different from that of other sentences.Generative process of TSCM is to first determine sentiment orientation of each word and then topic of each sentence in a review while taking word relation into consideration.Extensive experiments on real-world datasets (Movie and Amazon) show that TSCM significantly outperforms JST,S-LDA,D-PLDA and SAS in terms of the accuracy of sentiment classification and topic detection.
黄发良, 李超雄, 元昌安, 汪焱, 姚志强. 基于TSCM模型的网络短文本情感挖掘[J]. 电子学报, 2016, 44(8): 1887-1891.
HUANG Fa-liang, LI Chao-xiong, YUAN Chang-an, WANG Yan, YAO Zhi-qiang. Mining Sentiment for Web Short Texts Based on TSCM Model. Acta Electronica Sinica, 2016, 44(8): 1887-1891.
[1] Pang B,Lee L.Opinion mining and sentiment analysis[J].Foundations and trends in information retrieval,2008,2(1-2):1-135. [2] Tang H,Tan S,Cheng X.A survey on sentiment detection of reviews[J].Expert Syst Appl,2009,36(7):10760-10773 [3] 吕品,钟珞,唐琨皓.在线产品评论用户满意度综合评价研究[J].电子学报,2014,42(4):740-746.Lv P,Zhong L,Tang K.Customer satisfaction degree evaluation of online product review[J].Acta Electronica Sinica,2014,42(4):740-746(in Chinese) [4] Lin C,He Y.Joint sentiment/topic model for sentiment analysis[A].Proceedings of CIKM[C].New York:ACM,2009.375-384. [5] Li F,Huang M,Zhu X.Sentiment analysis with global topics and local dependency[A].Proceedings of AAAI[C].Atlanta:AAAI,2010.1371-1376. [6] Jo Y,Oh A H.Aspect and sentiment unification model for online review analysis[A].Proceedings of WSDM[C].NY:ACM,2011.815-824. [7] 淘宝评价流程[EB/OL].http://wenku.baidu.com/view/1ea83bd751e79b8969022629.html,2014-08-15. [8] Blei DM,Ng AY,Jordan MI.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022. [9] Mei QZ,Ling X,Wondra M,et al.Topic sentiment mixture:Modeling facets and opinions in weblogs[A].Proceedings of WWW[C].New York:ACM,2007.171-180 [10] Titov I,McDonald R.Modeling online reviews with multi-grain topic models[A].Proceedings of WWW[C].NY:ACM,2008.111-120 [11] Dasgupta S,Ng V.Topic-wise,sentiment-wise,or otherwise? Identifying the hidden dimension for unsupervised text classification[A].Proceedings of EMNLP[C].Singapore:ACL 2009.580-589 [12] He Y.Latent Sentiment Model for Weakly-Supervised Cross-lingualSentiment Classification[M].Advances in Information Retrieval.Berlin:Springer,2011.214-225. [13] Lin C,He Y,Everson R,et al.Weakly supervised joint sentiment-topic detection from text[J].IEEE Transactions on Knowledge and Data Engineering,2012,24(6):1134-1145. [14] Brody S,Elhadad N.An unsupervised aspect-sentiment model for online reviews[A].Proceedings of ACL[C].Stroudsburg:ACL,2010.804-812. [15] Moghaddam S,Ester M.ILDA:interdependent LDA model for learning latent aspects and their ratings from online product reviews[A].Proceedings of SIGIR[C].New York:ACM,2011.665-674. [16] Moghaddam S,Ester M.On the design of LDA models for aspect-based opinion mining[A].Proceedings of CIKM[C].New York:ACM,2012.803-812. [17] Mukherjee A,Liu B.Aspect extraction through semi-supervised modeling[A].Proceedings of ACL[C].Stroudsburg:ACL,2012.339-348.