An Improved Cooperative QPSO Algorithm with Adaptive Mutation Based on Entire Search History
ZHAO Ji1,2, FU Yi1, MEI Juan1
1. Research Centre of Environment Science & Engineering, Wuxi, Jiangsu 214063, China;
2. School of IoT Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
An improved cooperative QPSO algorithm with adaptive mutation based on entire search history (ESH-CQPSO) is proposed.The proposed algorithm employs a binary space partitioning tree structure to memorize the positions and the fitness values of the evaluated solution.The cooperation mechanism between the solutions can ensure enhanced search capabilities,improve the optimize performance and prevent premature convergence.Benefiting from the space partitioning scheme,a fast fitness function approximation using the archive is obtained.The approximation is used to improve the mutation strategy in ESH-CQPSO.The resultant mutation is adaptive and parameter-less.Compared with other traditional algorithms,the experiment results on standard testing functions show that the proposed algorithm is superior regarding the optimization of multimodal and unimodal functions,with enhancement in both convergence speed and precision,which demonstrate the effectiveness of the algorithm.
赵吉, 傅毅, 梅娟. 基于演化历史信息的自变异协同量子行为粒子群优化算法[J]. 电子学报, 2016, 44(12): 2900-2907.
ZHAO Ji, FU Yi, MEI Juan. An Improved Cooperative QPSO Algorithm with Adaptive Mutation Based on Entire Search History. Acta Electronica Sinica, 2016, 44(12): 2900-2907.
[1] 孙俊,方伟,吴小俊,等.量子行为粒子群优化:原理及其应用[M].北京:清华大学出版社,2011.31-50.
[2] Kennedy J,Eberhart R C.Particle swarm optimization[A].Proc of IEEE Int.Conf.on Neural Networks[C].Perth:IEEE Press,1995.1942-1948.
[3] 刘朝华,李小花,章兢.精英免疫克隆选择的协同进化粒子群算法[J].电子学报,2013,14(11):2167-2173. Liu Zhao-hua,Li Xiao-hua,Zhang Jing.Co-evolutionary particle swarm optimization algorithm based on elite immune clonal selection[J].Acta Electronica Sinica,2013,14(11):2167-2173.(in Chinese)
[4] Sun J,Fang W,Wu X J,Palade V,Xu W B.Quantum-behaved particle swarm optimization:analysis of individual particle behavior and parameter selection[J].Evolutionary Computation,2012,20(3):349-393.
[5] Li Y,Xiang R,Jiao L,et al.An improved cooperative quantum-behaved particle swarm optimization[J].Soft Computing,2012,16(6):1061-1069.
[6] Li Y,Jiao L,Shang R,et al.Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation[J].Information Sciences,2015,294:408-422.
[7] Glover F,Laguna M.Tabu Search[M].New York:Springer,2013.3261-3362.
[8] Reynolds R G.An introduction to cultural algorithms[A].Proceedings of the Third Annual Conference on Evolutionary Programming[C].River Edge,NJ,USA:World Scientific Publishing Co,Inc,1994.131-139.
[9] Farmer J D,Packard N H,Perelson A S.The immune system,adaptation,and machine learning[J].Physica D:Nonlinear Phenomena,1986,22(1):187-204.
[10] Yuen S Y,Chow C K.Continuous non-revisiting genetic algorithm[A].Proceedings of IEEE Conference Evolutionary Computation[C].Trondheim:IEEE,2009.1896-1903.
[11] Liang J J,Qu B Y,Suganthan P N.Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization[R].Singapore:Computational Intelligence Laboratory,Zhengzhou University,2013.
[12] 陈伟,周頔,孙俊,须文波.一种采用完全学习策略的量子行为粒子群优化算法[J].控制与决策,2012,27(5):719-723. Chen Wei,Zhou Di,Sun Jun,XU Wenbo.Improved quantum-behaved particle swarm optimization algorithm based on comprehensive learning strategy[J].Control and Decision,2012,27(5):719-723.(in Chinese)
[13] Li Zhonghua,He Chunhui,Li Jianming,Tan Hongzhou.Adaptive hierarchical artificial immune system and its application in RFID reader collision avoidance[J].Applied Soft Computing,2014(21):119-138.