电子学报

• •    

基于多模态特征融合网络的空时分组码识别算法

张聿远, 闫文君, 张立民   

  1. 海军航空大学信息融合研究所,山东 烟台 264001
  • 收稿日期:2021-03-09 修回日期:2021-04-12 出版日期:2023-02-01
    • 作者简介:
    • 张聿远 男,1997年1月生,山西长治人,现为海军航空大学硕士研究生,主要研究方向为空时分组码识别.E-mail: 2932484433@qq.com
      闫文君 男,1986年生,山东莱州人,现为海军航空大学副教授,主要研究方向为空时分组码识别.
      张立民 男,1966年生,辽宁开原人,现为海军航空大学教授、博士生导师,主要研究方向为卫星信号处理及应用.E-mail: iamzlm@163.com
    • 基金资助:
    • 国家自然科学基金重大研究计划(91538201);泰山学者工程专项经费(Ts201511020)

Space-Time Block Code Recognition Algorithm Based on Multi-Modality Features Fusion Network

ZHANG Yu-yuan, YAN Wen-jun, ZHANG Li-min   

  1. Department of Information Fusion,Naval Astronautical University,Yantai,Shandong 264001,China
  • Received:2021-03-09 Revised:2021-04-12 Online:2023-02-01
    • Supported by:
    • Foundation Item(s): The National Natural Science Foundation of China(91538201);The Taishan Scholar Special Foundation(Ts201511020)

摘要:

针对现有算法在空时分组码(Space-Time Block Code, STBC)识别过程中,存在的低信噪比下误判概率高、识别效率低等问题,本文提出了一种基于多模态特征融合网络(Multi-Modality Features Fusion Network,MMFFN)的空时分组码自动识别方法.首先在合并卷积层将STBC时域样本映射为一维特征向量的基础上,采用多扩张率下的扩张卷积提取非连续时间窗的STBC码内特征,实现多时延特征自提取,然后构建多时序特征自提取模块以提取码间时序特征,进一步扩展映射特征类型,最后提取多时延拼接层的最大时延特征作为深层融合特征,并增加了带跨越连接的残差层以提升融合特征利用率,实现空时分组码识别.仿真实验结果表明,本文算法在-9dB下对6类STBC信号的识别准确率达到了90%以上,较现有识别算法的性能获得了显著提升,对低信噪比有较强的适应性.本文提出的STBC多时延特征提取和融合方法,为结合传统算法设计深度学习网络结构提供了新思路,其思想同样可应用于其他通信信号识别领域.

关键词: 空时分组码, 深度学习, 扩张卷积, 多时延特征, 多时序特征, 最大时延融合

Abstract:

* Aiming at the problems of the existing algorithms in the process of space-time block code (STBC) recognition, such as high misdiagnosis probability and low recognition efficiency under low signal to noise ratio (SNR), this paper proposes an automatic space-time block code recognition method based on multi-modality feature fusion network (MMFFN). Firstly, on the basis of mapping STBC time-domain samples into one-dimensional feature vectors by merging convolution layers, the dilated convolution at multiple dilation rates is used to extract STBC code features from discontinuous time windows, and the self-extraction of multi-delay features is realized. Then, the multi-sequence feature self-extraction module is constructed to extract the inter-code sequence feature, and the mapping feature types are further extended. Finally, the maximum delay feature of the multi-delay Mosaic layer is extracted as the deep fusion feature, and the residual layer with span connection is added to improve the utilization of fusion feature and realize space-time block code recognition. Simulation results show that the recognition accuracy of the proposed algorithm for 6 types of STBC signals reaches more than 90% under -9dB, which is significantly improved compared with the performance of existing recognition algorithms, and has a strong adaptability to low SNR. The STBC multi-delay feature extraction and fusion method proposed in this paper provides a new idea for the design of deep learning network structure by combining traditional algorithms, and the idea can also be applied to other communication signal recognition fields.

Key words: space-time block code, deep learning, dilated convolution, muti-delay features, muti-sequential features, maximum delay fusion

中图分类号: