电子学报 ›› 2014, Vol. 42 ›› Issue (9): 1731-1737.DOI: 10.3969/j.issn.0372-2112.2014.9.011

• 学术论文 • 上一篇    下一篇

基于混沌鲶鱼效应的人工蜂群算法及应用

王生生1,2, 杨娟娟1,2, 柴胜1,2   

  1. 1. 吉林大学计算机科学与技术学院, 吉林长春 130012;
    2. 吉林大学符号计算与知识工程教育部重点实验室, 吉林长春 130012
  • 收稿日期:2014-01-13 修回日期:2014-03-27 出版日期:2014-09-25 发布日期:2014-09-25
  • 通讯作者: 柴 胜
  • 作者简介:王生生 男,1974年8月出生于吉林省长春市.博士、教授、博士生导师.主要研究领域为时空推理、机器视觉、计算智能、数据挖掘等. E-mail:wss@jlu.edu.cn;杨娟娟 女,1989年4月出生于河南省信阳市.现为硕士研究生.主要研究领域为计算智能. E-mail:hengyuklxts@163.com
  • 基金资助:

    国家自然科学基金项目(No.61133011,No.61303132,No.61103091,No.61202308);吉林省科技发展计划项目(No.20140101201JC,No.201201131);教育部留学回国启动基金;吉林大学杰出青年基金

Artificial Bee Colony Algorithm with Chaotic Catfish Effect and Its Application

WANG Sheng-sheng1,2, YANG Juan-juan1,2, CHAI Sheng1,2   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, China;
    2. Key Laboratory of Symbolic Computing and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
  • Received:2014-01-13 Revised:2014-03-27 Online:2014-09-25 Published:2014-09-25

摘要:

针对目前人工蜂群算法的早熟收敛、陷入局部极值等问题,提出一种基于混沌鲶鱼效应的改进人工蜂群算法.首先,采用随机性更高的混沌序列初始化蜂群以扩大其遍布范围;其次,集成了鲶鱼效应和混沌理论提出了混沌鲶鱼蜂,并引入了它与跌入局部极值的蜂群之间的有效竞争协调机制,从而增进蜜蜂群体跳出局部最优解、加速收敛的能力.支持向量机的学习能力主要取决于其惩罚因子C和核函数参数的合理选择,对其参数的优化可以提升其学习效果,然而现行算法均存在一定局限性.基于我们提出的改进人工蜂群算法,对支持向量机的参数进行了优化.最后,在UCI(加州大学欧文分校)数据集和行为识别真实数据集上进行了测试,验证基于改进人工蜂群算法的支持向量机具有更强的分类性能.

关键词: 人工蜂群算法, 混沌理论, 鲶鱼效应, 支持向量机, 行为识别

Abstract:

There are the disadvantages of easily falling into premature convergence and local optimal solution which the elementary artificial bee colony algorithm had in some degree.Chaotic Catfish effect was hence adopted in this paper to achieve the optimum performance of artificial bee colony algorithm,in which,chaotic mechanism was conducted to instantiate each individual of the swarm firstly owing to its marvelous intrinsic randomness.Then the efficacious competition and coordination mechanism among Catfish bees which were derived from the integration of Chaos theory with Catfish effect and originals were intended to boost the capabilities of them leaping out of local optimal solution and converging expeditiously.The practicability of Support Vector Machines(SVM)is excessively affected due to the difficulty of selecting appropriate penalty factor C and kernel function parameter of SVM.Conversely,all of the common SVM parameters optimization methods have their respective disadvantages with some degree of competence.We utilized the improved artificial bee colony algorithm to optimize the two parameters of SVM,simultaneously,the public datasets from the University of California-Irvine(UCI)and the activity recognition reality data were employed for evaluating the proposed model.Experimental results demonstrate that the classification accuracy obtained by the developed SVM was higher

Key words: artificial bee colony algorithm, chaos theory, catfish effect, support vector machine, activity recognition

中图分类号: