基于混沌鲶鱼效应的人工蜂群算法及应用

王生生, 杨娟娟, 柴胜

电子学报 ›› 2014, Vol. 42 ›› Issue (9) : 1731-1737.

PDF(747 KB)
PDF(747 KB)
电子学报 ›› 2014, Vol. 42 ›› Issue (9) : 1731-1737. DOI: 10.3969/j.issn.0372-2112.2014.9.011
学术论文

基于混沌鲶鱼效应的人工蜂群算法及应用

  • 王生生1,2, 杨娟娟1,2, 柴胜1,2
作者信息 +

Artificial Bee Colony Algorithm with Chaotic Catfish Effect and Its Application

  • WANG Sheng-sheng1,2, YANG Juan-juan1,2, CHAI Sheng1,2
Author information +
文章历史 +

摘要

针对目前人工蜂群算法的早熟收敛、陷入局部极值等问题,提出一种基于混沌鲶鱼效应的改进人工蜂群算法.首先,采用随机性更高的混沌序列初始化蜂群以扩大其遍布范围;其次,集成了鲶鱼效应和混沌理论提出了混沌鲶鱼蜂,并引入了它与跌入局部极值的蜂群之间的有效竞争协调机制,从而增进蜜蜂群体跳出局部最优解、加速收敛的能力.支持向量机的学习能力主要取决于其惩罚因子C和核函数参数的合理选择,对其参数的优化可以提升其学习效果,然而现行算法均存在一定局限性.基于我们提出的改进人工蜂群算法,对支持向量机的参数进行了优化.最后,在UCI(加州大学欧文分校)数据集和行为识别真实数据集上进行了测试,验证基于改进人工蜂群算法的支持向量机具有更强的分类性能.

Abstract

There are the disadvantages of easily falling into premature convergence and local optimal solution which the elementary artificial bee colony algorithm had in some degree.Chaotic Catfish effect was hence adopted in this paper to achieve the optimum performance of artificial bee colony algorithm,in which,chaotic mechanism was conducted to instantiate each individual of the swarm firstly owing to its marvelous intrinsic randomness.Then the efficacious competition and coordination mechanism among Catfish bees which were derived from the integration of Chaos theory with Catfish effect and originals were intended to boost the capabilities of them leaping out of local optimal solution and converging expeditiously.The practicability of Support Vector Machines(SVM)is excessively affected due to the difficulty of selecting appropriate penalty factor C and kernel function parameter of SVM.Conversely,all of the common SVM parameters optimization methods have their respective disadvantages with some degree of competence.We utilized the improved artificial bee colony algorithm to optimize the two parameters of SVM,simultaneously,the public datasets from the University of California-Irvine(UCI)and the activity recognition reality data were employed for evaluating the proposed model.Experimental results demonstrate that the classification accuracy obtained by the developed SVM was higher

关键词

人工蜂群算法 / 混沌理论 / 鲶鱼效应 / 支持向量机 / 行为识别

Key words

artificial bee colony algorithm / chaos theory / catfish effect / support vector machine / activity recognition

引用本文

导出引用
王生生, 杨娟娟, 柴胜. 基于混沌鲶鱼效应的人工蜂群算法及应用[J]. 电子学报, 2014, 42(9): 1731-1737. https://doi.org/10.3969/j.issn.0372-2112.2014.9.011
WANG Sheng-sheng, YANG Juan-juan, CHAI Sheng. Artificial Bee Colony Algorithm with Chaotic Catfish Effect and Its Application[J]. Acta Electronica Sinica, 2014, 42(9): 1731-1737. https://doi.org/10.3969/j.issn.0372-2112.2014.9.011
中图分类号: TP319   

参考文献

[1] Karaboga D.An Idea Based on Honey Bee Swarm for Numerical Optimization[R].Kayseri:Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
[2] 高卫峰, 刘三阳, 黄玲玲.受启发的人工蜂群算法在全局优化问题中的应用[J].电子学报, 2012, 40(12):2398-2403. Gao Wei-feng, Liu San-yang, Huang Ling-ling.Inspired artificial bee colony algorithm for global optimization problems[J].Acta Electronica Sinica, 2012, 40(12):2398-2403.(in Chinese)
[3] 张银雪, 田学民, 邓晓刚.基于改进人工蜂群算法的盲源分离方法[J].电子学报, 2012, 40(10):2026-2030. Zhang Yinxue, Tian Xuemin, Deng Xiaogang.Blind source separation based on modified artificial bee colony algorithm[J].Acta Electronica Sinica, 2012, 40(10):2026-2030.(in Chinese)
[4] Xie Chunli, Shao Cheng, Zhao Dandan.Parameters optimization of least squares support vector machines and its application[J].Journal of Computers, 2011, 6(9):1935-1941.
[5] Yu Jieyue, Lin Jian.The ink preset algorithm based on the model optimized by chaotic bee colony[A].Proceedings of the 5th International Congress on Image and Signal Processing.[C].America:IEEE Computer Society, 2012.547-551.
[6] 李志勇, 李玲玲, 等.基于Memetic框架的混沌人工蜂群算法[J].计算机应用研究, 2012, 29(11):4045-4049. Li Zhi-yong, Li Ling-ling, et al.Chaos artificial bee colony based on Memetic framework[J].Application research of Computers, 2012, 29(11):4045-4049.(in Chinese)
[7] Zhang Likang.An analysis of common search in Chinese of Google the meta library[J].Data Science Journal, 2007, 6(Supplement):813-823.
[8] Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer Science Business Media, 2000.10-60.
[9] Keerthi S S, Lin C J.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Computation, 2003, 15(7):1667-1689.
[10] Friedrichs F, Igel C.Evolutionary tuning of multiple SVM parameters[J].Neurocomputing, 2005, 64(Special):107-117.
[11] Zhao Mingyuan, Fu Chong, et al.Feature selection and parameter optimization for support vector machines:A new approach based on genetic algorithm with feature chromosomes[J].Expert Systems with Applications, 2011, 38(5):5197-5204.
[12] Alwan H B, Ku-Mahamud K R.Solving support vector machine model selection problem using continuous ant colony optimization[J].International Journal of Information Processing and Management, 2013, 4(2):86-97.
[13] Lin S W, Ying K C, et al.Particle swarm optimization for parameter determination and feature selection of support vector machines[J].Expert Systems with Applications, 2008, 35(4):1817-1824.
[14] 刘路, 王太勇.基于人工蜂群算法的支持向量机优化[J].天津大学报, 2011, 44(9):803-809. Liu Lu, Wang Taiyong.Support vector machine optimization based on artificial bee colony algorithm[J].Journal of Tianjin University, 2011, 44(9):803-809.(in Chinese)
[15] Schuster H G, Wolfram J.Deterministic Chaos:An Introduction[M].Weinheim:WILEY-VCH Verlag GmbH & Co.KGaA, 2005.19-68.
[16] Chuang L Y, Tsai S W, Yang C H.Fuzzy adaptive catfish particle swarm optimization[J].Artificial Intelligence Research, 2012, 1(2):149-170.
[17] Muller K, Mike S, et al.An introduction to kernel-based learning algorithms[J].IEEE Transactions on Neural Networks, 2001, 12(2):181-201.
[18] Chang C C, Lin C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):27:1——27:27.
[19] Davide A, Alessandro G, et al.Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine[A].International Workshop of Ambient Assisted Living[C].Berlin Heidelberg:Springer Verlag, 2012.216-223.
[20] Hamm J, Stone B, et al.Automatic Annotation of Daily Activity from Smartphone-Based Multisensory Streams[M].Berlin Heidelberg:Springer Verlag, 2013.328-342.
[21] Pekka S, Juha R.Recognizing human activities user-independently on smartphones based on accelerometer data[J].International Journal of Artificial Intelligence and Interactive Multimedia, 2012, 1(5):38-45.

基金

国家自然科学基金项目 (No.61133011,No.61303132,No.61103091,No.61202308); 吉林省科技发展计划项目 (No.20140101201JC,No.201201131); 教育部留学回国启动基金; 吉林大学杰出青年基金

PDF(747 KB)

Accesses

Citation

Detail

段落导航
相关文章

/