电子学报 ›› 2017, Vol. 45 ›› Issue (11): 2593-2601.DOI: 10.3969/j.issn.0372-2112.2017.11.004

• 学术论文 • 上一篇    下一篇

基于全卷积网络的语义显著性区域检测方法研究

郑云飞1,2,3, 张雄伟1, 曹铁勇1, 孙蒙1   

  1. 1. 解放军陆军工程大学, 江苏南京 210007;
    2. 解放军炮兵防空兵学院, 安徽合肥 230031;
    3. 安徽省偏振成像与探测重点实验室, 安徽合肥 230031
  • 收稿日期:2016-08-11 修回日期:2016-12-08 出版日期:2017-11-25
    • 通讯作者:
    • 曹铁勇
    • 作者简介:
    • 郑云飞,男,1983年生,解放军陆军工程大学博士研究生,解放军炮兵防空兵学院讲师.研究方向为图像与视频的显著性检测.E-mail:yfzheng83@163.com;张雄伟,男,解放军陆军工程大学教授,研究方向为多媒体信息处理;孙蒙,男,比利时鲁汶大学博士,解放军陆军工程大学讲师,研究方向为多媒体信息处理,机器学习.
    • 基金资助:
    • 国家自然科学基金 (No.61471394); 国家青年自然科学基金 (No.61402519); 江苏省自然科学基金 (No.BK2012510,No.BK20140071,No.BK20140074)

The Semantic Salient Region Detection Algorithm Based on the Fully Convolutional Networks

ZHENG Yun-fei1,2,3, ZHANG Xiong-wei1, CAO Tie-yong1, SUN Meng1   

  1. 1. The Army Engineering University of PLA, Nanjing, Jiangsu 210007, China;
    2. The Army Artilery and Defense Academy of PLA, Hefei, Anhui 230031, China;
    3. The Key Laboratory of Polarization Imaging Detection Technology, Hefei, Anhui 230031, China
  • Received:2016-08-11 Revised:2016-12-08 Online:2017-11-25 Published:2017-11-25

摘要: 基于底层视觉特征和先验知识的显著性区域检测算法难以检测一些复杂的显著性目标,人的视觉系统能分辨这些目标是由于其中包含丰富的语义知识.本文构建了一个基于全卷积结构的语义显著性区域检测网络,用数据驱动的方式构建从图像底层特征到人类语义认知的映射,提取语义显著性区域.针对网络提取的语义显著性区域的缺点,本文进一步引入颜色信息、目标边界信息、空间一致性信息获得准确的超像素级前景和背景概率.最后提出一个优化模型融合前景和背景概率信息、语义信息、空间一致性信息得到最终的显著性区域图.在6个数据集上与15种最新算法的比较实验证明了本文算法的有效性和鲁棒性.

关键词: 语义信息, 全卷积网络, 颜色外观模型, 显著性区域检测

Abstract: The existing salient region detection algorithms based on visual stimulus and prior knowledge are difficult to detect some complicated salient regions.The human vision system can distinguish these complicated salient regions because of the rich semantic knowledge in the human visual system.We construct a semantic salient region detection network using the fully convolutional structure.Learning the mapping from the low-level features to the human semantic cognition,our network can extract semantic salient region effectively.Aiming to the defects of the semantic salient region map,we introduce the color information,object boundary information and spatial consistency information to derive accurate superpixel-level foreground and background probability.At last,we fuse the foreground and background probability,semantic information and spatial consistency information to derive the final salient region map.The experiments comparing with the state-of-the-art 15 algorithms on 6 data sets demonstrate the effectiveness of our algorithm.

Key words: semantic information, fully convolutional network, color appearance model, salient region detection

中图分类号: