电子学报 ›› 2019, Vol. 47 ›› Issue (9): 1848-1854.DOI: 10.3969/j.issn.0372-2112.2019.09.005

所属专题: 优秀论文(2022)

• 学术论文 • 上一篇    下一篇

融合多维语义表示的概率矩阵分解模型

任开旭, 王玉龙, 刘同存, 李炜   

  1. 北京邮电大学网络技术研究院, 北京 100876
  • 收稿日期:2018-10-11 修回日期:2019-04-25 出版日期:2019-09-25
    • 通讯作者:
    • 任开旭
    • 作者简介:
    • 王玉龙 男,1968年生于山东鱼台.现为北京邮电大学副教授、硕士生导师.主要研究方向为移动增值业务系统,业务网络智能化.E-mail:wangyulong@ebupt.com;刘同存 男,1984年生于山东临沂.现为北京邮电大学博士研究生.主要研究方向为推荐算法.E-mail:liutongcun@ebupt.com;李炜 男,1973年出生于天津,现为北京邮电大学副教授、硕士生导师.主要研究方向为业务网络智能化,移动增值业务系统.E-mail:liwei@ebupt.com
    • 基金资助:
    • 国家自然科学基金 (No.61771068,No.61671079); 北京市自然科学基金 (No.4182041); 教育部科学技术研究重点 (重大)项目 (No.MCM20130310)

A Probabilistic Matrix Factorization Model Based on Multidimensional Semantic Representation Learning

REN Kai-xu, WANG Yu-long, LIU Tong-cun, LI Wei   

  1. Institute of Network Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2018-10-11 Revised:2019-04-25 Online:2019-09-25 Published:2019-09-25
    • Corresponding author:
    • REN Kai-xu
    • Supported by:
    • National Natural Science Foundation of China (No.61771068, No.61671079); National Natural Science Foundation of Beijing Municipality,  China (No.4182041); Science and Technology Research Project  (Major Project) of Ministry of Education of China (No.MCM20130310)

摘要: 协同过滤作为推荐系统核心技术,面临严重的评分数据稀疏性问题.融合物品文本信息可以有效的解决数据稀疏性问题,然而,目前的方法侧重于提取文本的单维特征,忽略了物品语义表示的多维特性.深度挖掘物品内容的多维特性可以更加精细化描述物品的语义信息,有助于提升推荐效果.为此,本文提出基于胶囊网络的概率生成模型.模型利用胶囊网络挖掘文本的多维语义特征,并以正则化方式融入概率矩阵分解框架,建立用户与物品之间的内在关系.实验结果表明本文提出的模型具有更高的评分预测精度.

关键词: 协同过滤, 概率矩阵分解, 胶囊网络, 多维语义特征, 正则化, 混合推荐

Abstract: Collaborative filtering, as the core technology of recommendation systems, is currently facing the sparsity problem of rating data. This can be effectively solved through integrating item text information. However, current methods focus on extracting the one-dimensional features of the text, neglecting its multidimensional semantic features. Digging deeply into the multidimensional semantic features of the text can improve the recommendations. To help achieve this goal,a probabilistic matrix factorization model based on multidimensional semantic representation learning is proposed in the present study. The model uses a capsule network to mine the multidimensional semantic features of the text, and then integrates it into the probabilistic matrix decomposition framework using the regularization method to reveal hidden features linking users and items. Experimental results show that the proposed model has higher prediction accuracy.

Key words: collaborative filtering, probabilistic matrix factorization, capsule network, multidimensional semantic features, regularization, hybrid recommendation

中图分类号: