1 |
Wang Y F, Liu H M, Fu Z W. Low-light image enhancement via the absorption light scattering model[J]. IEEE Transactions on Image Processing, 2019, 28(11):5679 - 5690.
|
2 |
Ren Y R, Ying Z Q, Li T H, et al. LECARM: Low-light image enhancement using camera response model[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(4):968 - 981.
|
3 |
Guo Y H, Ke X, Ma J, et al. A pipeline neural network for low-light image enhancement[J]. IEEE Access, 2019, 7: 13737 - 13744.
|
4 |
Park S, Yu S, Kim M, et al. Dual autoencoder network for Retinex-based low-light image enhancement[J]. IEEE Access, 2018, 6:22084 - 22093.
|
5 |
Cheng H D, Shi X J. A simple and effective histogram equalization approach to image enhancement[J]. Digital Signal Processing, 2004, 14(2):158 - 170.
|
6 |
Fu X Y, Zeng D L, Yue H, et al. A weighted variational model for simultaneous reflectance and illumination estimation[A]. 2016 IEEE Conference on Computer Vision and Pattern Recognition[C]. USA:IEEE, 2016. 2782 - 2790.
|
7 |
Ying Z Q, Ge L, Ren Y R, et al. A new image contrast enhancement algorithm using exposure fusion framework[A]. International Conference on Computer Analysis of Images and Patterns[C]. Sweden:Springer Verlag, 2017.36 - 46.
|
8 |
Loh Y P, Liang X F, Chan C S. Low-light image enhancement using Gaussian process for features retrieval[J]. Signal Processing: Image Communication, 2019, 74: 175 - 190.
|
9 |
Guo X J, Yu L, Ling H B. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2):982 - 993.
|
10 |
徐少平,刘婷云,林珍玉,等.深度卷积神经网络降噪模型的技术瓶颈与研究展望[J].中国图象图形学报, 2019, 24(8):1207 - 1214.
|
|
Xu S P, Liu T Y, Lin Z Y, et al. Main bottlenecks and research prospects of the deep convolutional neural network-based denoising model[J].Journal of Image and Graphics, 2019, 24(8):1207 - 1214.(in Chinese)
|
11 |
Zhang K, Zuo W M, Chen Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7):3142 - 3155.
|
12 |
Cai J R, Gu S H, Zhang L. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 2018, 27(4): 2049 - 2062.
|
13 |
Fu X Y, Liao Y H, Zeng D L, et al. A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation[J]. IEEE Transactions on Image Processing, 2015, 24(12):4965 - 4977.
|
14 |
Li M D, Liu J Y, Yang W H, et al. Structure-revealing low-light image enhancement via robust Retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6):2828 - 2841.
|
15 |
Fu X Y, Zeng D L, Yue H, et al. A fusion-based enhancing method for weakly illuminated images[J]. Signal Processing, 2016, 129: 82 - 96.
|
16 |
Wang Z, Li Q. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(5):1185 - 1198.
|
17 |
Ying Z Q, Ge L, Wen G. A bio-inspired multi-exposure fusion framework for low-light image enhancement[J]. Journal of Latex Class Files, 2015, 14(8):1 - 10.
|
18 |
Kai Z, Ma K D, Hassen R, et al. Perceptual evaluation of multi-exposure image fusion algorithms[A]. International Workshop on Quality of Multimedia Experience[C]. Singapore: IEEE, 2014. 7 - 12.
|