[1] Ketkar N.Deep Learning with Python[M].Berkeley:Apress,2017.113-132. [2] Floreano D,et al.Neuroevolution:from architectures to learning[J].Evolutionary Intelligence,2008,1(1):47-62. [3] Fogel D B,Fogel L J.An introduction to evolutionary programming[A].European Conference on Artificial Evolution[C]. Berlin:Springer,1995.21-33. [4] Andrew A M.Systems:an introductory analysis with applications to biology,control,and artificial intelligence[J].Robotica,1993,11(5):489-489. [5] Beyer H G,Schwefel H P.Evolution strategies-a comprehensive introduction[J].Natural Computing,2002,1(1):3-52. [6] Koza J R,Koza J R.Genetic Programming:On the Programming of Computers by Means of Natural Selection[M].Cambridge:MIT Press,1992. [7] 贾亚军,丛爽.进化算法的分析及对比研究[A].2009系统仿真技术及其应用学术会议论文集[C].合肥:中国科学技术大学出版社,2009.855-861. [8] Zhang C,Lim P,Qin A K,et al.Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J].IEEE Transactions on Neural Networks and Learning Systems,2016,28(10):2306-2318. [9] Smith C,Jin Y.Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction[J].Neurocomputing,2014,143(1):302-311. [10] Lukoševi Ač ius M,Jaeger H.Reservoir computing approaches to recurrent neural network training[J].Computer Science Review,2009,3(3):127-149. [11] Evans B,Al-Sahaf H,Xue B,et al.Evolutionary deep learning:a genetic programming approach to image classification[A].IEEE Congress on Evolutionary Computation[C].New York,USA:IEEE,2018.1-6. [12] Atkins D,Neshatian K,Zhang M.A domain independent genetic programming approach to automatic feature extraction for image classification[A].IEEE Congress of Evolutionary Computation[C].New York,USA:IEEE,2011.238-245. [13] Suganuma M,Shirakawa S,Nagao T.A genetic programming approach to designing convolutional neural network architectures[A].Proceedings of the Genetic and Evolutionary Computation Conference[C].New York,USA:ACM,2017.497-504. [14] Xie L,Yuille A.Genetic CNN[A].Proceedings of the IEEE International Conference on Computer Vision[C].New York,USA:IEEE,2017.1379-1388. [15] Simonyan K,Zisserman A.Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL].heeps:arXiv.org/abs/1409.1556,2014. [16] He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2016.770-778. [17] Huang G,Liu Z,Van Der Maaten L,et al.Densely connected convolutional networks[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2017.4700-4708. [18] Wang C,Xu C,Yao X,et al.Evolutionary generative adversarial networks[J].IEEE Transactions on Evolutionary Computation,2019,23(6):921-934. [19] Goodfellow I,Pouget-Abadie J,Mirza M,et al.Generative adversarial nets[A].Advances in Neural Information Processing Systems[C].Cambridge,UK:MIT Press,2014.2672-2680. [20] Lin J.Divergence measures based on the shannon entropy[J].IEEE Transactions on Information Theory,1991,37(1):145-151. [21] Assuncao F,Sereno D,Lourenco N,et al.Automatic evolution of autoencoders for compressed representations[A].IEEE Congress on Evolutionary Computation[C].New York,USA:IEEE,2018.1-8. [22] Suganuma M,Ozay M,Okatani T.Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search[EB/OL].https:arXiv.org/abs/1803.00370,2018. [23] Miikkulainen R,Liang J,Meyerson E,et al.Artificial Intelligence in the Age of Neural Networks and Brain Computing[M].Amsterdam:Elsevier Inc,2018.293-312. [24] Stanley K O,Miikkulainen R.Evolving neural networks through augmenting topologies[J].Evolutionary Computation,2002,10(2):99-127. [25] Agrawal R K,Muchahary F,Tripathi M M.Long term load forecasting with hourly predictions based on long-short-term-memory networks[A].2018 IEEE Texas Power and Energy Conference[C].New York,USA:IEEE,2018.1-6. [26] Mnih V,Kavukcuoglu K,Silver D,et al.Playing Atari with Deep Reinforcement Learning[EB/OL].https:arXiv.org/abs/1312.5602,2013. [27] Salimans T,Ho J,Chen X,et al.Evolution Strategies as a Scalable Alternative to Reinforcement Learning[EB/OL].https:arXiv.org/abs/1703.03864,2017. [28] Such F P,Madhavan V,Conti E,et al.Deep Neuroevolution:Genetic Algorithms are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning[EB/OL].https:arXiv.org/abs/1712.06567,2017. [29] Lehman J,Chen J,Clune J,et al.ES is more than just a traditional finite-difference approximator[A].Proceedings of the Genetic and Evolutionary Computation Conference[C].New York,USA:ACM,2018.450-457. [30] Conti E,Madhavan V,Such F P,et al.Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents[A].Advances in Neural Information Processing Systems[C].Combridge:MIT Press,2018.5027-5038. [31] Gaier A,Ha D.Weight agnostic neural networks[A].Advances in Neural Information Processing Systems[C]. Combridge,UK:MIT Press,2019.5365-5379. [32] Miller B L,Goldberg D E.Genetic algorithms,tournament selection,and the effects of noise[J].Complex Systems,1995,9(3):193-212. [33] Morse G,Stanley K O.Simple evolutionary optimization can rival stochastic gradient descent in neural networks[A].Proceedings of the Genetic and Evolutionary Computation Conference[C].New York,USA:Association Computing Machinery,2016.477-484. [34] Krizhevsky A,Sutskever I,Hinton G E.Imagenet classification with deep convolutional neural networks[A].Advances in Neural Information Processing Systems[C].New York,USA:Association Computing Machinery,2012.1097-1105. [35] Szegedy C,Liu W,Jia Y,et al.Going deeper with convolutions[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2015.1-9. [36] Sara U,Akter M,Uddin M S.Image quality assessment through FSIM,SSIM,MSE and PSNR-A comparative study[J].Journal of Computer and Communications,2019,7(3):8-18. [37] Krause J,Stark M,Deng J,et al.3D object representations for fine-grained categorization[A].Proceedings of the IEEE International Conference on Computer Vision Workshops[C].New York,USA:IEEE, 2013.554-561. [38] Pathak D,Krahenbuhl P,Donahue J,et al.Context encoders:feature learning by inpainting[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2016.2536-2544. [39] Yeh R A,Chen C,Yian Lim T,et al.Semantic image inpainting with deep generative models[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2017.5485-5493. |