[1] 王旭,段辉宏,聂生东.基于CT影像组学的非小细胞肺癌预后分析方法[J].电子学报,2020,48(4):637-642. Wang X,Duan H H,Nie S D.Prognostic analysis method for non-small cell lung cancer based on CT radiomics[J].Acta Electronica Sinica,2020,48(4):637-642.(in Chinese). [2] 桂春燕.应用CT和磁共振成像诊断盆腔肿瘤的临床价值[J].影像研究与医学应用,2020,4(15):40-41. Gui C Y.The clinical value of CT and magnetic resonance imaging in the diagnosis of pelvic tumors[J].Journal of Imaging Research and Medical Applications,2020,4(15):40-41.(in Chinese). [3] 朱立军.CT、MRI进行股骨头坏死放射诊断的效果观察[J].影像研究与医学应用,2020,4(15):136-137. Zhu L J.The effect of CT and MRI in radiographic diagnosis of femoral head necrosis[J].Journal of Imaging Research and Medical Applications,2020,4(15):136-137.(in Chinese). [4] Gao W X,Hui R,Tian Z. Classification of CT brain images based on deep learning networks[J].Computer Methods and Programs in Biomedicine,2017,138:49-56. [5] Cheng J Z,Ni D,Chou Y H,et al.Computer-aided diagnosis with deep learning architecture:Applications to breast lesions in US images and pulmonary nodules in CT scans[J].Scientific Reports.2016,6:1-13. [6] 王磊,徐涛,宋传东,等.基于深度学习的miRNA与疾病相关性预测算法[J].电子学报,2020,48(5):870-877. Wang L,Xu T,Song C D,et al.Prediction algorithm of association between miRNAs and diseases based on deep learning[J].Acta Electronica Sinica,2020,48(5):870-877.(in Chinese). [7] Ciompi F,Hoop D B,Riel S J,et al.Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box[J].Medical Image Analysis,2015,26(1):195-202. [8] Oktay O,Ferrante E,Kamnitsas K,et al.Anatomically constrained neural networks (ACNNs):Application to cardiac image enhancement and segmentation[J].IEEE Transactions on Medical Imaging,2018,37(2):384-395. [9] Leclerc S,Smistad E,Pedrosa J,et al.Deep learning for segmentation using an open large-scale dataset in 2D echocardiography[J].IEEE Transactions on Medical Imaging,2019,38(9):2198-2210. [10] Pereira S,Pinto A,Alves V,et al.Brain tumor segmentation using convolutional neural networks in MRI images[J].IEEE Transactions on Medical Imaging,2016,35(5):1240-1251. [11] Kumar A,Kim J,Lyndon D,et al.An ensemble of fine-tuned convolutional neural networks for medical image classification[J].IEEE Journal of Biomedical and Health Informatics,2017,21(1):31-40. [12] Farooq A,Anwar S,Awais M,et al.A deep CNN based multi-class classification of Alzheimer's disease using MRI[A].IEEE International Conference on Imaging Systems and Techniques[C].New York,USA:IEEE,2017.1-6. [13] Zahedinasab R,Mohseni H.Using deep convolutional neural networks with adaptive activation functions for medical CT brain image classification[A].International Iranian Conference on Biomedical Engineering[C].New York,USA:IEEE,2018.1-6. [14] Wang F,Jiang M Q,Qian C,et al.Residual attention network for image classification[A].IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2017.3156-3164. [15] Hu J,Shen L,Sun G.Squeeze-and-Excitation networks[A].IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2018.7132-7141. [16] Woo S,Park J,Lee J,et al.CBAM:Convolutional block attention module[A].Proceedings of the European Conference on Computer Vision[C].Berlin,Germany:Springer,2018.3-19. [17] Cao Y H,Chen K,Loy C C,et al.Prime sample attention in object detection[A].IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2020.11583-11591. [18] Kaul C,Manandhar S,Pears N.Focusnet:An attention-based fully convolutional network for medical image segmentation[A].IEEE 16th International Symposium on Biomedical Imaging[C].New York,USA:IEEE,2019.455-458. [19] 唐海桃,薛嘉宾,韩纪庆.一种多尺度前向注意力模型的语音识别方法[J].电子学报.2020,48(7):1276-1283. Tang H T,Xue J B,Han J Q,et al.A method of multi-scale forward attention model for speech recognition[J].Acta Electronica Sinica,2020,48(7):1276-1283.(in Chinese). [20] He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[A].IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2016.770-778. [21] Xiang L,Shuo C,Xiao L H,et al.Understanding the disharmony between dropout and batch normalization by variance shift[A].IEEE Conference on Computer Vision[C].New York,USA:IEEE,2019.2677-2685. [22] Szegedy C,Vanhoucke V,Ioffe S,et al.Rethinking the inception architecture for computer vision[A].IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2016.2818-2826. [23] Kingma D,Ba J.Adam:A method for stochastic optimization[J].arXiv Preprint,2015,arXiv:1412.6980. |