1 |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
|
2 |
Wu Z H, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
|
3 |
王莹. 基于成分分解的自适应滤波降噪方法研究[D].哈尔滨:哈尔滨工业大学, 2017.
|
|
Wang Y. Research on adaptive filter denoising method based on component decomposition[D]. Harbin, China: Harbin Institute of Technology, 2017. (in Chinese)
|
4 |
Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
|
5 |
Li F Y, Zhang B, Verma S, et al. Seismic signal denoising using thresholded variational mode decomposition[J]. Exploration Geophysics, 2018, 49(4): 450-461.
|
6 |
Hu H P, Zhang L M, Yan H C, et al. Denoising and baseline drift removal method of MEMS hydrophone signal based on VMD and wavelet threshold processing[J]. IEEE Access, 2019, 7: 59913-59922.
|
7 |
Ram R, Mohanty M N. Performance analysis of adaptive variational mode decomposition approach for speech enhancement[J]. International Journal of Speech Technology, 2018, 21(2): 369-381.
|
8 |
Gu X J, Chen C Z. Rolling bearing fault signal extraction based on stochastic resonance-based denoising and VMD[J].International Journal of Rotating Machinery, 2017, 2017: 1-12.
|
9 |
Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224.
|
10 |
曹伟, 孙红梅, 贾瑞生, 等. 基于小波包分解重构的微地震信号降噪方法[J]. 电子测量与仪器学报, 2018, 32(4): 134-143.
|
|
Cao W, Sun H M, Jia R S, et al. Micro-seismic signal denoising method based on wavelet packet decomposition and reconstruction[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(4): 134-143. (in Chinese)
|
11 |
Awal M A, Mostafa S S, Ahmad M, et al. An adaptive level dependent wavelet thresholding for ECG denoising[J]. Biocybernetics and Biomedical Engineering, 2014, 34(4): 238-249.
|
12 |
Kopsinis Y, McLaughlin S. Development of EMD-based denoising methods inspired by wavelet thresholding[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1351-1362.
|
13 |
Tsakonas E E, Sidiropoulos N D, Swami A. Optimal particle filters for tracking a time-varying harmonic or chirp signal[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4598-4610.
|
14 |
倪锦根. 时变参数比例自适应滤波算法[J]. 电子学报, 2016, 44(5): 1208-1212.
|
|
Ni J G. Time-varying parameter proportionate adaptive filtering algorithm[J]. Acta Electronica Sinica, 2016, 44(5): 1208-1212. (in Chinese)
|
15 |
张强, 行鸿彦. 基于EMD方差特性的混沌信号自适应去噪算法[J]. 电子学报, 2015, 43(5): 901-906.
|
|
Zhang Q, Xing H Y. Adaptive denoising algorithm based on the variance characteristics of EMD[J]. Acta Electronica Sinica, 2015, 43(5): 901-906. (in Chinese)
|
16 |
王文波, 晋云雨, 王斌, 等. 混沌信号的自适应阈值同步挤压小波变换消噪[J]. 电子学报, 2018, 46(7): 1652-1657.
|
|
Wang W B, Jin Y Y, Wang B, et al. Chaotic signal de-noising based on adaptive threshold synchrosqueezed wavelet transform[J]. Acta Electronica Sinica, 2018, 46(7): 1652-1657. (in Chinese)
|
17 |
Nasri M, Nezamabadi-Pour H. Image denoising in the wavelet domain using a new adaptive thresholding function[J]. Neurocomputing, 2009, 72(4/5/6): 1012-1025.
|
18 |
王磊, 孙玮, 陈奕博, 等. 基于自适应小波阈值的心电信号降噪方法[J]. 计算机工程与应用, 2018, 54(15): 29-33.
|
|
Wang L, Sun W, Chen Y B, et al. ECG denoising method based on adaptive wavelet threshold selection[J]. Computer Engineering and Applications, 2018, 54(15): 29-33. (in Chinese)
|