电子学报 ›› 2017, Vol. 45 ›› Issue (7): 1740-1749.DOI: 10.3969/j.issn.0372-2112.2017.07.026

• 学术论文 • 上一篇    下一篇

考虑不完全维护影响的随机退化设备剩余寿命预测

郑建飞1, 胡昌华1, 司小胜1, 林斌2   

  1. 1. 火箭军工程大学控制工程系, 陕西西安 710025;
    2. 火箭军驻307 厂军事代表室, 江苏南京 210006
  • 收稿日期:2016-04-19 修回日期:2017-02-10 出版日期:2017-07-25
    • 作者简介:
    • 郑建飞,男,1980年6月出生,河北霸州人.2016年6月获火箭军工程大学博士学位,现为火箭军工程大学控制工程系测试教研室讲师,从事寿命预测与健康管理、可靠性和预测维护决策等方面的工作.E-mail:zjf302@126.com;胡昌华,男,1966年6月出生,湖北罗田人,教授、博士生导师.1996年6月于西北工业大学获工学博士学位.现为火箭军工程大学"导航、制导与控制"国家重点学科带头人,从事故障诊断、寿命预测和最优维护等方面的研究工作.E-mail:hch6603@263.net
    • 基金资助:
    • 国家自然科学基金 (No.61573066,No.61573065)

Remaining Useful Life Prognostic for the Stochastic Degradation Device Subject to Imperfect Maintenance

ZHENG Jian-fei1, HU Chang-hua1, SI Xiao-sheng1, LIN Bin2   

  1. 1. Department of Control Engineering, Xi’an Institute of High-Tech, Xi’an, Shaanxi 710025, China;
    2. Representative Office of the Rocket Force in 307 Factory, Nanjing, Jiangsu 210006, China
  • Received:2016-04-19 Revised:2017-02-10 Online:2017-07-25 Published:2017-07-25

摘要:

针对寿命周期中存在不完全维护影响的随机退化设备剩余寿命难以预测的问题,提出了一种考虑不完全维护影响的退化建模和剩余寿命预测方法.首先,在Wiener过程理论架下,建立了能够表征不完全维护影响的分阶段退化过程模型,然后从阶段时间服从的逆高斯分布出发,利用逆高斯分布的卷积特性,从理论上推导出存在不完全维护下寿命分布的解析解,并将维护效果的随机性和维护次数的影响传递到寿命分布中.进一步通过时间尺度变换,得到了考虑未来存在不完全维护影响下的剩余寿命分布解析解.通过极大似然估计和最小二乘法对模型未知参数进行了估计.最后将本文方法应用到陀螺仪的实际退化过程中,验证了所提方法的有效性.

关键词: 退化模型, 剩余寿命, 不完全维护, 卷积, 预测

Abstract:

The current remaining useful life (RUL) prognostic approaches for stochastic degradation device subject to imperfect preventive maintenance suffer from challenge of low accuracy.A new degradation modeling and RUL prognostic approach are proposed considering the effect of imperfect preventive maintenance.First,based on the theory of Wiener process,the stochastic degradation process with the imperfect maintenance is modeled as multi-stage Wiener process.Second,starting with the inverse Gaussian distributed stage time,the lifetime distribution is derived by the convolution property of the inverse Gaussian distribution.Furthermore,the analytical solution of the RUL distribution can be calculated for the stochastic degradation device subject to imperfect preventive maintenance in future.Finally,for verifying the presented approach,a case study for gyros is provided,and the results indicate that the presented approach of this paper can improve the modeling fitting and the accuracy of the estimated RUL.

Key words: degradation model, remaining useful life, imperfect maintenance, convolution, prognostic

中图分类号: