[1] 焦李成,杨淑媛,刘芳等.神经网络七十年:回顾与展望[J].计算机学报,2016,39(1):1-21. Jiao Li-cheng,Yang Shu-yuan,Liu Fang.Neural network in seventy:retrospect and prospect[J].Chinese Journal of Computers,2016,39(1):1-21.(in Chinese)
[2] Lee H,Grosse R,Ranganath R.Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[A].Proceedings of the 26th Annual International Conference on Machine Learning[C].New York:ACM,2009:609-616.
[3] Swersky K,Chen B,Marlin B M.A tutorial on stochastic approximation algorithms for training restricted boltzmann machines and deep belief nets[A].ITA[C].IEEE,2010,80-89.
[4] Mei X G,Ma Y,Fan F.Infrared ultraspectral signature classification based on a restricted Boltzmann machine with sparse and prior constraints[J].International Journal of Remote Sensing,2015,36(18):4724-4747.
[5] Hinton G E,Srivastava N,Krizhevsky A,Sutskever I,Salakhutdinov R.Improving neural networks by preventing co-adaptation of feature detectors[DB/OL].https://arxiv.org/pdf/1207.0580v1.pdf,2012-7-3.
[6] Wager S,Wang S,Liang P.Dropout training as adaptive regularization[DB/OL].https://arxiv.org/pdf/1307.1493v2.pdf,2013-11-1.
[7] Hinton G E.Training products of experts by minimizing contrastive divergence[J].Neural Computation,2002,14(8):1711-1800.
[8] Mayraz G,Hinton G E.Recognizing handwritten digits using hierarchical products of experts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(2):189-197.
[9] Hinton G E,Osindero S,Teh Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
[10] 杨杰,孙亚东,张良俊, 刘海波.基于弱监督学习的去噪受限玻尔兹曼机特征提取算法[J].电子学报,2014,42(12):2365-2370. Yang Jie,Sun Ya-dong,Zhang Liang-jun,Liu Hai-bo.Weakly supervised learning with denoising restricted Boltzmann machines for extracting features[J].Acta Electronica Sinica,2014,42(12):2365-2370. (in Chinese)
[11] Lopes N,Ribeiro B,Goncalves J.Restricted Boltzmann machines and deep belief networks on multi-core processors[A].WCCI 2012 IEEE World Congress on Computational Intelligence June[C].Brisbane,Australia,2012.10-15.
[12] Zhang Ch Y,Philip-Chen C L,Chen D W.MapReduce based distributed learning algorithm for restricted Boltzmann machine[J].Neurocomputing,2016,198:4-11.
[13] Rumelhart D E,Hinton G E,Williams R J.Learning representations by back-propagating errors[J].Nature,1986,323:533-536.
[14] Hinton G E.A practical guide to training restricted Boltzmann machines[R].Neural Networks:Tricks of the Trade (2nd ed), 2012.599-619.
[15] Sutskever I,Martens J,Dahl G,Hinton G.On the importance of initialization and momentum in deep learning[A].Proc International Conference on Machine Learning[C].Atlanta,USA,2013:1139-1147.
[16] Nitanda A.Stochastic proximal gradient descent with acceleration techniques[A].Proc Advances in Neural Information Processing Systems[C].Montreal,Canada,2014.1574-1582.
[17] Zareba S,Gonczarek A,Tomczak J M,Swiatek J.Accelerated learning for restricted Boltzmann machine with momentum term[A].International Conference on Systems Engineering[C].Coventry,UK,2015.187-192.
[18] Yuan K,Ying B C,Sayed A H.On the influence of momentum acceleration on online learning[J].Journal of Machine Learning Research,2016(17):1-66.
[19] 李飞,高晓光,万开方.基于权值动量的RBM加速学习算法研究[J].自动化学报,2017,43(7):1142-1159. Li Fei,Gao Xiao-guang,Wan Kai-fang.Research on RBM accelerating learning algorithm with weight momentum[J].Acta Automatica Sinica,2017,43(7):1142-1159.(in Chinese)
[20] Fischer A,Igel C.Training restricted Boltzmann machines:An introduction[J].Pattern Recognition,2014,(47):25-39.
[21] Polyak T.Some methods of speeding up the convergence of iteration methods[J].USSR Computational Mathematics and Mathematical Physics,1964,4(5):1-17.
[22] Goodfellow I,Bengio Y,Courville A著,赵申剑等译,深度学习[M].北京:人民邮电出版社,2017.181-187.
[23] 王岳青,窦勇,吕启,李宝峰,李腾.基于异构体系结构的并行深度学习编程框架[J].计算机研究与发展,2016,53(6):1202-1210. Wang Yue-qing,Dou Yong,Lv Qi,et al.A parallel deep learning programming framework based on heterogeneous architecture[J].Journal of Computer Research and Development,2016,53(6):1202-1210.(in Chinese)
[24] 付晓,沈远彤,付丽华等.基于特征聚类的稀疏自编码快速算法[J].电子学报,2018,46(5):1041-1046. FU Xiao,SHEN Yuan-tong,FU Li-hua,et al..An optimized sparse auto-encoder network based on feature clustering[J].Acta Electronica Sinica 2018,46(5):1041-1046(in Chinese)
[25] 李倩玉,蒋建国,齐美彬.基于改进深层网络的人脸识别算法[J].电子学报,2017,45(3):619-625. Li Qian-yu, Jiang Jian-guo,Qi Mei-bin.Face recognition algorithm based on improved deep networks[J].Acta Electronica Sinica,2017,45(3):619-625.(in Chinese) |