[1] Liu L,Ouyang W L,Wang X.Deep learning for generic object detection:A survey[J].arXiv Preprint,2018,arXiv:1809.02165. [2] 黄凯奇,任伟强,谭铁牛.图像物体分类与检测算法综述[J].计算机学报,2014,37(6):1225-1240. HUANG Kai-qi,REN Wei-qiang,TAN Tie-niu.Overview of image object classification and detection algorithms[J].Chinese Journal of Computers,2014,37(6):1225-1240.(in Chinese) [3] Shi B,Bai X,Belongie S.Detecting oriented text in natural images by linking segments[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2017.2550-2558. [4] 周炫余,刘娟,卢笑,等.一种联合文本和图像信息的行人检测方法[J].电子学报,2017,45(1):140-146. ZHOU Xuan-yu,LIU Juan,LU Xiao,et al.A pedestrian detection method combining text and image information[J].Acta Electronica Sinica,2017,45(1):140-146.(in Chinese) [5] 姜维,张重生,殷绪成.基于深度学习的场景文字检测综述[J].电子学报,2019,47(5):1152-1161. JIANG Wei,ZHANG Chong-sheng,YIN Xu-cheng.Summary of scene text detection based on deep learning[J].Acta Electronica Sinica,2019,47(5):1152-1161.(in Chinese) [6] 辛鹏,许悦雷,唐红,等.全卷积网络多层特征融合的飞机快速检测[J].光学学报,2018,38(3):315003. XIN Peng,XU Yuelei,TANG Hong,et al.Rapid detection of aircraft with multi-layer feature fusion of fully convolutional networks[J].Acta Optics Sinica,2018,38(3):315003.(in Chinese) [7] 丁鹏,张叶,贾平,等.基于视觉显著性的海面舰船检测技术[J].电子学报,2018,46(1):127-134. DING Peng,ZHANG Ye,JIA Ping,et al.Sea-based ship inspection technology basedon visual saliency[J].Acta Electronica Sinica,2018,46(1):127-134.(in Chinese) [8] Tian Z,Huang W,He T,et al.Detecting text in natural image with connectionist text proposal network[A].European Conference on Computer Vision[C].Berlin,Cham:Springer,2016.56-72. [9] Redmon J,Divvala S,Girshick R,et al.You only look once:Unified,real-time object detection[A].IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2016.779-788. [10] Redmon J,Farhadi A.YOLO9000:better,faster,stronger[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Honolulu,USA:IEEE,2017.6517-6525. [11] Redmon Joseph,Farhadi Ali.Yolov3:An incremental improvement[J].arXiv Preprint,2018,arXiv:1804.02767. [12] Liu W,Anguelov D,Erhan D,et al.SSD:Single shot multibox detector[A].European Conference on Computer Vision[C].Berlin,GER:Springer International Publishing,2016.21-37. [13] Fu C Y,Liu W,Ranga A,et al.DSSD:Deconvolutional single shot detector[J].arXiv Preprint,2017,arXiv:1701.06659. [14] Shen Z Q,Liu Z H,Li J G,et al.DSOD:Learning deeply supervised object detectors from scratch[A].Proceedings of the IEEE International Conference on Computer Vision[C].New York,USA:IEEE,2017.1919-1927. [15] Girshick R,Donahue J,Darrell T.Rich feature hierarchies for accurate object detection and semantic segmentation[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Columbus,USA:IEEE,2014.580-587. [16] Girshick R.Fast R-CNN[A].Proceedings of the IEEE International Conference on Computer Vision[C].New York,USA:IEEE,2015.1440-1448. [17] Ren S,He K M,Girshick R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[A].International Conference on Neural Information Processing Systems[C].Cambridge USA:MIT Press,2015.91-99. [18] Henderson P,Ferrari V.End-to-end training of object class detectors for mean average precision[A].Proceedings of the 13th Asian Conference on Computer Vision[C].Taipei,China:Springer,2016.198-213. [19] Hosang J,Benenson R,Schiele B.Learning non-maximum suppression[A].Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition[C].Honolulu,USA:IEEE,2017.6469-6477. [20] Stewart R,Andriluka M,Ng A Y.End-to-end people detection in crowded scenes[A].Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition[C].Las Vegas,USA:IEEE,2016.2325-2333. [21] Bodla N,Singh B,Chellappa R,et al.Soft-NMS-improving object detection with one line of code[A].IEEE International Conference on Computer Vision[C].New York,USA:IEEE,2017.5562-5570. [22] Hamid Rezatofighi,Nathan Tsoi,JunYoung Gwak,et al.Generalized intersection over union:A metric and a loss for bounding box[J].arXiv Preprint,2019,arXiv:1902.09630. [23] Neubeck A,Gool L V.Efficient non-maximum suppression[A].International Conference on Pattern Recognition[C].New York,USA:IEEE Computer Society,2006.850-855. [24] Rahman M A,Wang Y.Optimizing intersection-over-union in deep neural networks for image segmentation[A].Advances in Visual Computing[M].Berlin,GER:Springer International Publishing,2016.234-244. [25] 赵文清,严海,邵绪强.改进的非极大值抑制算法的目标检测[J].中国图象图形学报,2018,23(11):1676-1685. ZHAO Wen-qing,YAN Hai,SHAO Xu-qiang.Target detection by improved non-maximum suppression algorithm[J].Journal of Image and Graphics,2018,23(11):1676-1685.(in Chinese) [26] 牛斌,张怡迪,马利,等.一种融合多尺度特征的多物体检测方法[J].辽宁大学学报(自然科学版),2019,46(02):118-124. NIU Bin,ZHANG Yi-di,MA Li,et al.A multi-object detection method combining multi-scale features[J].Journal of Liaoning University (Natural Science Edition),2019,46(02):118-124.(in Chinese) [27] 张烨,许艇,冯定忠,等.基于难分样本挖掘的快速区域卷积神经网络目标检测研究[J].电子与信息学报,2019,41(06):1496-1502. ZHANG Ye,XU Ting,FENG Ding-zhong,et al.Research on target detection of fast regional convolutional neural network based on mining difficult samples[J].Journal of Electronics and Information Technology,2019,41(06):1496-1502.(in Chinese) [28] Kong T,Sun F C,Yao A B,et al.RON:Reverse connection with objectness prior networks for object detection[A].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C].Honolulu,USA:IEEE,2017.5244-5252. [29] He K M,Zhang X Y,Ren S Q,et al.Deep residual learning for image recognition[A].IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2016.770-778. [30] Huang G,Liu Z,Maaten L V D,et al.Densely connected convolutional networks[A].IEEE Conference on Computer Vision and Pattern Recognition[C].New York,USA:IEEE,2017.2261-2269. |