1 |
赖英旭, 刘增辉, 蔡晓田, 等. 工业控制系统入侵检测研究综述[J]. 通信学报, 2017, 38(2): 143-156.
|
|
Lai Y X, Liu Z H, Cai X T, et al. Research on intrusion detection of industrial control system[J]. Journal on Communications, 2017, 38(2): 143-156. (in Chinese)
|
2 |
张凯一, 陈铁明, 严春. 工业控制系统安全及异常检测研究进展[J]. 信息安全研究, 2017, 3(7): 624-632.
|
|
Zhang K Y, Chen T M, Yan C. Research survey on industrial control systems security and intrusion detection[J]. Journal of Information Security Research, 2017, 3(7): 624-632. (in Chinese)
|
3 |
毕战科, 许胜礼. 入侵检测技术的研究现状及其发展[J]. 软件导刊, 2010, 9(11): 152-154.
|
|
Bi Z K, Xu S L. Actuality and development trend of intrusion detection technology[J]. Software Guide, 2010, 9(11): 152-154. (in Chinese)
|
4 |
Yim K, Castiglione A, Yi J H, et al. Cyber threats to industrial control systems[A]. Proceedings of the 7th ACM CCS International Workshop on Managing Insider Security Threats[C]. New York, NY, USA: ACM, 2015. 79-81.
|
5 |
Cheminod M, Durante L, Valenzano A. Review of security issues in industrial networks[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 277-293.
|
6 |
尚文利, 张盛山, 万明, 等. 基于PSO-SVM的Modbus TCP通讯的异常检测方法[J]. 电子学报, 2014, 42(11): 2314-2320.
|
|
Shang W L, Zhang S S, Wan M, et al. Modbus/TCP communication anomaly detection algorithm based on PSO-SVM[J]. Acta Electronica Sinica, 2014, 42(11): 2314-2320. (in Chinese)
|
7 |
张响亮, 王伟, 管晓宏. 基于隐马尔可夫模型的程序行为异常检测[J]. 西安交通大学学报, 2005, 39(10): 1056-1059.
|
|
Zhang X L, Wang W, Guan X H. Detection of anomalous program behaviors based on hidden Markov models[J]. Journal of Xi'an Jiaotong University, 2005, 39(10): 1056-1059. (in Chinese)
|
8 |
谢柏林, 余顺争. 基于关键事件序列的应用层异常检测机制[J]. 小型微型计算机系统, 2010, 31(2): 249-253.
|
|
Xie B L, Yu S Z. Application level anomaly detection based on series of events[J]. Journal of Chinese Computer Systems, 2010, 31(2): 249-253. (in Chinese)
|
9 |
张云贵, 赵华, 王丽娜. 基于工业控制模型的非参数CUSUM入侵检测方法[J]. 东南大学学报(自然科学版), 2012, 42(S1): 55-59.
|
|
Zhang Y G, Zhao H, Wang L N. A non-parametric CUSUM intrusion detection method based on industrial control model[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(S1): 55-59. (in Chinese)
|
10 |
钱叶魁, 陈鸣, 叶立新, 等. 基于多尺度主成分分析的全网络异常检测方法[J]. 软件学报, 2012, 23(2): 361-377.
|
|
Qian Y K, Chen M, Ye L X, et al. Network-wide anomaly detection method based on multiscale principal component analysis[J]. Journal of Software, 2012, 23(2): 361-377. (in Chinese)
|
11 |
Hinton G E. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
|
12 |
Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders[A]. Proceedings of the 25th International Conference on Machine Learning(ICML'08)[C]. New York, NY, USA: ACM, 2008. 1096-1103.
|
13 |
Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11: 3371-3408.
|
14 |
Rifai S, Vincent P, Muller X, et al. Contractive auto-encoders: Explicit invariance during feature extraction[A]. Proceedings of the 28th International Conference on International Conference on Machine Learning(ICML'11)[C]. New York, NY, USA: ACM, 2011. 833-840
|
15 |
Chen M M, Xu Z X, Weinberger K Q, et al. Marginalized denoising autoencoders for domain adaptation[A]. Proceedings of the 29th International Coference on International Conference on Machine Learning(ICML'12)[C]. New York, NY, USA: ACM, 2012. 1627-1634.
|
16 |
Bengio Y. Learning deep architectures for AI[J]. Foundations and Trends ® in Machine Learning, 2009, 2(1): 1-127.
|
17 |
Liu S J, Yang N, Li M, et al. A recursive recurrent neural network for statistical machine translation[A]. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)[C]. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014. 1491-1500.
|
18 |
Biswas A, Karunakaran S. Cybernetic modeling of industrial control systems: Towards threat analysis of critical infrastructure[EB/OL]. , 2021.
|
19 |
Soelaiman R, Martoyo A, Purwananto Y, et al. Implementation of recurrent neural network and boosting method for time-series forecasting[A]. International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering[C]. Bandung, Indonesia: IEEE, 2009. 1-8.
|
20 |
Ren H R, Ye Z X, Li Z W. Anomaly detection based on a dynamic Markov model[J]. Information Sciences, 2017, 411: 52-65.
|
21 |
Tsai C L, Chang A Y, Chen C J, et al. Dynamic intrusion detection system based on feature extraction and multidimensional hidden Markov model analysis[A]. International Carnahan Conference on Security Technology[C]. Zurich, Switzerland: IEEE, 2009. 85-88.
|
22 |
Marchi E, Vesperini F, Eyben F, et al. A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks[A]. IEEE International Conference on Acoustics, Speech and Signal Processing[C]. South Brisbane, QLD, Australia: IEEE, 2015. 1996-2000.
|
23 |
Marchi E, Ferroni G, Eyben F, et al. Multi-resolution linear prediction based features for audio onset detection with bidirectional LSTM neural networks[A]. IEEE International Conference on Acoustics, Speech and Signal Processing[C]. Florence, Italy: IEEE, 2014. 2164-2168.
|
24 |
梁辰, 李成海, 周来恩. PCA-BP神经网络入侵检测方法[J]. 空军工程大学学报(自然科学版), 2016, 17(6): 93-98.
|
|
Liang C, Li C H, Zhou L E. A PCA-BP neural network-based intrusion detection method[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17(6): 93-98. (in Chinese)
|
25 |
杨雅辉, 黄海珍, 沈晴霓, 等. 基于增量式GHSOM神经网络模型的入侵检测研究[J]. 计算机学报, 2014, 37(5): 1216-1224.
|
|
Yang Y H, Huang H Z, Shen Q N, et al. Research on intrusion detection based on incremental GHSOM[J]. Chinese Journal of Computers, 2014, 37(5): 1216-1224. (in Chinese)
|