1 |
Krizhevsky A, Sutskever II, Hinton G. ImageNet classification with deep convolutional neural networks[A]. Proceedings of the Advances in Neural Information Processing Systems[C]. USA, 2012. 1097 - 1105.
|
2 |
方旭, 王光辉, 杨化超,等. 结合均值漂移分割与全卷积神经网络的高分辨遥感影像分类[J]. 激光与光电子学进展, 2018, 55(2):446 - 454.
|
|
Fang X, Wang G H, Yang H C, et al. High resolution remote sensing image classification combining with mean-shift segmentation and fully convolution neural network[J]. Laser & Optoelectronics Progress, 2018, 55 (2):446 - 454.(in Chinese)
|
3 |
徐婷婷, 吉晓东, 李文华,等. 基于颜色和纹理特征的胶囊内镜图像分类[J]. 现代电子技术, 2018, 41(19):66 - 70.
|
|
Xu T T, Ji X D, Li W H, et al. Capsule endoscope image classification based on color and texture features [J]. Modern Electronics Technique, 2018, 41 (19): 66 - 70. (in Chinese)
|
4 |
张慧娜,李裕梅,傅莺莺.基于Haar-CNN模型的自然场景图像分类的研究[J].四川师范大学学报(自然科学版),2017,40(01):119 - 126.
|
|
Zhang H N, Li Y M, Fu Y Y. Research on natural scene image classification based on Haar-CNN model [J]. Journal of Sichuan Normal University (Natural Science), 2017,40 (01): 119 - 126. (in Chinese)
|
5 |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. Machine Learning, arXiv:,2015.
|
6 |
He K, Zhang X, Ren S, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[A]. IEEE International Conference on Computer Vision (ICCV) [C]. Chile: IEEE, 2015. 1026 - 1034.
|
7 |
Clevert D E, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (elus) [J]. arXiv:2015, 1511.07289.
|
8 |
Sainath TN, Mohamed A, Kingsbury B, et al. Deep convolutional neural networks for LVCSR[A]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing[C]. Vancouver: IEEE, 2013. 8614 - 8618.
|
9 |
李明威. 图像分类中的卷积神经网络方法研究[D].南京邮电大学,2016.
|
|
Li M W. Research of Convolution Neural Network in Image Classification [D]. Nanjing University of Posts and Telecommunications, 2016. (in Chinese)
|
10 |
Ju Y, Guo J, Liu S. A deep learning method combined sparse autoencoder with SVM[A]. 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery[C]. USA: IEEE, 2015.257 - 260.
|
11 |
Zeggada A, Benbraika S, Melgani F, et al. Multilabel conditional random field classification for UAV images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(99):1 - 5.
|
12 |
Karen S, Andrew Z, et al. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, arXiv 1409.1556, 2014.
|
13 |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[A]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [C]. USA: IEEE, 2016. 770 - 778.
|
14 |
Huang G, Liu Z, Laurens V D M, et al. Densely connected convolutional networks[A]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [C]. USA: IEEE, 2017. 2261 - 2269.
|
15 |
刘芳, 路丽霞, 黄光伟,等.基于离散余弦变换和深度网络的地貌图像分类[J]. 光学学报, 2018, 38(6):266 - 274.
|
|
Liu F, Lu L X, Huang G W, et al. Landform image classification based on discrete Cosine transformation and deep network [J]. Acta Optica Sinica, 2018, 38 (6): 266 - 274. (in Chinese)
|