A Blind Watermark Decoder in NSST Domain Using BKF Vector HMT Model

WANG Xiang-yang, NIU Pan-pan, TIAN Jing, YANG Hong-ying, XU Huan

ACTA ELECTRONICA SINICA ›› 2021, Vol. 49 ›› Issue (1) : 40-49.

PDF(8763 KB)
CIE Homepage  |  Join CIE  |  Login CIE  |  中文 
PDF(8763 KB)
ACTA ELECTRONICA SINICA ›› 2021, Vol. 49 ›› Issue (1) : 40-49. DOI: 10.12263/DZXB.20191028

A Blind Watermark Decoder in NSST Domain Using BKF Vector HMT Model

  • WANG Xiang-yang, NIU Pan-pan, TIAN Jing, YANG Hong-ying, XU Huan
Author information +

Abstract

In this paper, we propose a blind NSST domain image watermark decoder, wherein a vector-based HMT statistical model using BKF distribution is used. In the proposed scheme, the NSST is firstly performed on the original host image, and then the adaptive high-order watermark embedding strength functions are constructed, and finally the watermark data is embedded into the significant high-frequency coefficients in NSST domain. At the watermark receiver, NSST highpass coefficients are firstly modeled by employing the BKF vector HMT, where the BKF marginal statistics and strong intra-subband, cross-scale, and cross-orientation dependencies of NSST coefficients are incorporated. Then the statistical model parameters of BKF vector HMT are estimated using the expectation maximization approach. And finally a blind image watermark decoder is developed using BKF vector HMT and the maximum likelihood decision rule. The experimental results validate the effectiveness of the proposed technique.

Key words

image watermarking / vector-based HMT / BKF distribution / nonsubsampled Shearlet transform / adaptive watermark embedding strength / maximum likelihood decision

Cite this article

Download Citations
WANG Xiang-yang, NIU Pan-pan, TIAN Jing, YANG Hong-ying, XU Huan. A Blind Watermark Decoder in NSST Domain Using BKF Vector HMT Model[J]. Acta Electronica Sinica, 2021, 49(1): 40-49. https://doi.org/10.12263/DZXB.20191028

References

[1] 岳桢,李子臣,杨义先,游福成,刘福平.直方图2Bin多进制图像数字水印算法的研究[J].电子学报,2020,48(3):531-537. YUE Zhen,LI Zi-chen,YANG Yi-xian,YOU Fu-cheng,LIU Fu-ping.A histogram-based 2Bin M-ary image digital watermarking algorithm[J].Acta Electronica Sinica,2020,48(3):531-537.(in Chinese)
[2] LIU X,HAN G,WU J,et al.Fractional Krawtchouk transform with an application to image watermarking[J].IEEE Transactions on Signal Processing,2017,65(6):1894-1908.
[3] 鲁荣波,陈留洋,丁雷,李建锋,曾琳玲.基于Contourlet域虚拟树结构和FOA-SVR的自适应鲁棒数字水印算法[J].电子学报,2017,45(3):674-679. LU Rong-bo,CHEN Liu-yang,DING Lei,LI Jian-feng,ZENG Lin-ling.Adaptive and robust watermarking scheme based on Contourlet domain coefficients suppositional tree model and FOA-SVR[J].Acta Electronica Sinica,2017,45(3):674-679.(in Chinese)
[4] BARNI M,BARTOLINI F,DEROSA A,et al.Optimum decoding and detection of multiplicative watermarks[J].IEEE Trans on Signal Processing,2003,51(4):1118-1123.
[5] SADREAZAMI H,AHMAD M O,SWAMY M N S.Multiplicative watermark decoder in contourlet domain using the normal inverse Gaussian distribution[J].IEEE Trans on Multimedia,2016,18(2):196-207.
[6] ETEMAD S,AMIRMAZLAGHANI M.A new multiplicative watermark detector in the contourlet domain using t location-scale distribution[J].Pattern Recognition,2018,77:99-112.
[7] AMINI M,AHMAD M O,SWAMY M N S.A robust multibit multiplicative watermark decoder using vector-based hidden Markov model in wavelet domain[J].IEEE Transactions on Circuits and Systems for Video Technology,2018,28(2):402-413.
[8] 王春桃,倪江群,黄继武,张荣跃,罗锡璋.基于内容自适应的优化DWT-HMM顽健图像水印算法[J].通信学报,2007,28(2):80-87. WANG Chun-tao,NI Jiang-qun,HUANG Ji-wu,ZHANG Rong-yue,LUO Xi-zhang.Robust DWT-HMM image watermarking algorithm optimized with content-adaptive approach[J].Journal on Communications,2007,28(2):80-87.(in Chinese)
[9] AMINI M,AHMAD M O,SWAMY M N S.A new locally optimum watermark detection using vector-based hidden Markov model in wavelet domain[J].Signal Processing,2017,137:213-222.
[10] EASLEY G,LABATE D,LIM W D.Sparse directional image representations using the discrete shearlet transform[J].Applied and Computational Harmonic Analysis,2008,25(1):25-46.
[11] JALAL F M,LARBI B.Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities[J].IEEE Transactions on Image Processing,2005,14(2):231-240.
[12] SWIDERSKI B,OSOWSKI S,KRUK M.Texture characterization based on the Kolmogorov-Smirnov distance[J].Expert Systems with Applications,2015,42(1):503-509.
[13] Po D D Y,Do M N.Directional multiscale modeling of images using the contourlet transform[J].IEEE Transactions on Image Processing,2006,15(6):1610-1620.

Funding

National Natural Science Foundation of China (No.61472171, No.61701212); Research Fund of Education Department of liaoning Province  (Key Program) (No.LZ2019001); Natural Science Foundation of Liaoning Province,  China (No.2019-ZD-0468)
PDF(8763 KB)

1272

Accesses

0

Citation

Detail

 
Sections
Recommended

/