A Multichannel SAR-GMTI Clutter Suppression Method Assisted by Range-Doppler-Band 3D-AWP-MRF Classification

HAN Chao-lei, YANG Zhi-wei, ZHANG Qing-jun, LIAO Gui-sheng, HE Peng-yuan

ACTA ELECTRONICA SINICA ›› 2021, Vol. 49 ›› Issue (12) : 2339-2348.

PDF(4461 KB)
CIE Homepage  |  Join CIE  |  Login CIE  |  中文 
PDF(4461 KB)
ACTA ELECTRONICA SINICA ›› 2021, Vol. 49 ›› Issue (12) : 2339-2348. DOI: 10.12263/DZXB.20200481
PAPERS

A Multichannel SAR-GMTI Clutter Suppression Method Assisted by Range-Doppler-Band 3D-AWP-MRF Classification

Author information +

HeighLight

To address the problem that the clutter suppression performance of a multichannel synthetic aperture radar ground moving target indicator(SAR-GMTI) system is reduced due to non-uniform clutter in a complex geographical scene, we propose a multichannel SAR-GMTI clutter suppression method assisted by Range-Doppler-Band three dimension adaptive weighted penalty markov random field(3D-AWP-MRF) classification. Firstly, an adaptive weighted penalty function is constructed using the markov properties of the feature types in the Range-Doppler-Band 3D SAR image domain. Spatial distance, inter-class Fisher distance, local roughness distance, and gradient direction distance are included. Subsequently, in the Bayesian framework, iterated conditional mode(ICM) algorithm is used to solve the maximum posterior probability of the feature type of the Range-Doppler unit, so as to accurately classify the multiband SAR images. Then, the image classification results are obtained by image morphology operation. Finally, the clutter covariance matrix is estimated separately for each closed region, and adaptive clutter suppression processing is performed. Compared with the traditional method, the proposed method not only can improve the suppression performance about 10~15 dB for the strong clutter in undulating areas, but also reduce the output signal power loss about 2.5dB of the moving targets in flat areas.

Cite this article

Download Citations
HAN Chao-lei , YANG Zhi-wei , ZHANG Qing-jun , LIAO Gui-sheng , HE Peng-yuan. A Multichannel SAR-GMTI Clutter Suppression Method Assisted by Range-Doppler-Band 3D-AWP-MRF Classification[J]. ACTA ELECTONICA SINICA, 2021, 49(12): 2339-2348. https://doi.org/10.12263/DZXB.20200481

References

1
杨志伟, 张蕊, 许华健, 等. 多特征辅助的SAR-GMTI雷达扩展动目标检测方法[J]. 电子学报, 2016, 44(12): 2916 - 2923.
YangZ W, ZhangR, XuH J, et al. A multi-features-aided method for extended target detection of SAR-GMTI[J]. Acta Electronica Sinica, 2016, 44(12): 2916 - 2923.(in Chinese)
2
曾操, 廖桂生, 杨志伟, 等. 基于样本加权的三通道SAR-GMTI机载数据处理及性能分析[J]. 电子学报, 2009, 37(3): 506 - 512.
ZengC, LiaoG S, YangZ W, et al. Airborne data processing and performance analysis based on three-aperture SAR-GMTI system using weighted sample[J]. Acta Electronica Sinica, 2009, 37(3): 506 - 512.(in Chinese)
3
Cerutti-MaoriD, KlareJ, BrennerA R, et al. Wide-area traffic monitoring with the SAR/GMTI system PAMIR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10):3019 - 3030.
4
Cerutti-MaoriD, SikanetaI, GierullC H. Optimum SAR/GMTI processing and its application to the radar satellite RADARSAT-2 for traffic monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3868 - 3881.
5
Cerutti-MaoriD, SikanetaI. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):560 - 572.
6
RabideauD J,SteinhardtA O. Improved adaptive clutter cancellation through data-adaptive training[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 879 - 891.
7
ConteE, De MaioA, FarinaA, et al. Design and analysis of a knowledge-aided radar detector for Doppler processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3):1058 - 1079.
8
吴永辉,计科峰,李禹,等. 基于Wishart分布和MRF的多视全极化SAR图像分割[J]. 电子学报, 2007, 35(12): 2302 - 2306.
WuY H, JiK F, LiY, et al. Segmentation of multi-look fully polarimetric SAR images based on wishart distribution and MRF[J]. Acta Electronica Sinica, 2007, 35(12):2302 - 2306.(in Chinese)
9
傅兴玉,尤红建,付琨. 基于改进Markov随机场的高分辨率SAR图像建筑物分割算法[J]. 电子学报201240(6):1141 - 1147.
FuX Y, YouH J, FuK. Building segmentation from high-resolution SAR images based on improved Markov random field [J]. Acta Electronica Sinica, 2012, 40(6):1141 - 1147.(in Chinese).
10
HedbergH, DokladalP, OwallV. Binary morphology with spatially variant structuring elements: Algorithm and architecture[J]. IEEE Transactions on Image Processing, 2009, 18(3): 562 - 572.
11
PanC, GaoX B, WangY, et al. Markov random fields integrating adaptive interclass-pair penalty and spectral similarity for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 2520 - 2534.
12
RodriguesF A Á, NetoJ F S R, MarquesR C P, et al. SAR image segmentation using the roughness information[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2):132 - 136.
13
SchreiberW F. Fundamentals of electronic imaging systems[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986.
14
PhamM T, MercierG, MichelJ. PW-COG: An effective texture descriptor for VHR satellite imagery using a pointwise approach on covariance matrix of oriented gradients[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3345 - 3359.

Funding

National Natural Science Foundation of China(62071481)
Youth Fund of National Natural Science Foundation of China(61801373)
Shanghai Municipal Aerospace Science and Technology Innovation Fund(SAST2018043)
PDF(4461 KB)

Accesses

Citation

Detail

Sections
Recommended

/