An Adaptive Photoelectric Array Signal Processing Algorithm for Free Space Optical Communication

MA Chun-bo, SHI Jun-jie, WANG Ying, ZHANG Lei, AO Jun

ACTA ELECTRONICA SINICA ›› 2021, Vol. 49 ›› Issue (10) : 1908-1912.

PDF(938 KB)
CIE Homepage  |  Join CIE  |  Login CIE  |  中文 
PDF(938 KB)
ACTA ELECTRONICA SINICA ›› 2021, Vol. 49 ›› Issue (10) : 1908-1912. DOI: 10.12263/DZXB.20201407
OPTICAL WIRELESS COMMUNICATION AND NETWORKING TECHNOLOGY

An Adaptive Photoelectric Array Signal Processing Algorithm for Free Space Optical Communication

Author information +

HeighLight

The light beam flicker and jitter caused by atmospheric turbulence will cause the point spread function (PSF) on the focal plane of the optical communication receiver to randomly fluctuate and drift, causing the photodetector to fail to effectively cover the signal light field. In order to minimize the bit error rate (BER) of free space optical communication (FSO) system under the limitation of multi-mode Gaussian background light noise field and received optical signal energy efficiency, an adaptive photoelectric array signal processing algorithm suitable for intensity modulation / direct detection (IM / DD) is proposed. In this method, the combined array path method is used to calculate the system BER of different array elements, and the minimum BER is used as the criterion to optimize the received photoelectric array element sequence. The analysis and simulation results show that under the same atmospheric turbulence and background light noise conditions, compared with the existing photoelectric array processing algorithm, the new method can greatly reduce the computational complexity of the system, while the system performance loss can be almost ignored.

Cite this article

Download Citations
MA Chun-bo , SHI Jun-jie , WANG Ying , ZHANG Lei , AO Jun. An Adaptive Photoelectric Array Signal Processing Algorithm for Free Space Optical Communication[J]. ACTA ELECTONICA SINICA, 2021, 49(10): 1908-1912. https://doi.org/10.12263/DZXB.20201407

References

1
刘艺, 赵义武, 倪小龙, 等. 双向大气信道激光传输的信道互易性研究[J]. 中国光学, 2020, 13(1): 140-147.
LiuY, ZhaoY W, NiX L, et al. Channel reciprocity of bidirectional atmospheric laser transmission channels[J]. Chinese Optics, 2020, 13(1): 140-147. (in Chinese)
2
InK S, MaoS W. A survey of free space optical networks[J]. Digital Communications and Networks, 2017, 3(2): 67-77.
3
JeffreyR M, DavidR G, DanielJ T. Adaptive transceivers for mobile free-space optical communications[A]. 2006 IEEE Military Communications Conference[C]. Washington, USA: IEEE, 2006. 2813-2817.
4
HopenC Y, PhillipsR L, AndrewsL C. Aperture averaging of optical scintillations: Power fluctuations and the temporal spectrum[J]. Waves in Random Media, 2000, 10(1): 53-70.
5
马春波, 夏宝会, 敖珺, 等. 基于APD接收机的LDPC精确译码算法[J]. 红外与激光工程, 2015, 44(3): 1028-1033.
MaC B, XiaB H, AoJ, et al. Accurate decoding arithmetic of LDPC based on APD receivers[J]. Infrared and Laser Engineering, 2015, 44(3): 1028-1033. (in Chinese)
6
柯熙政, 宋鹏, 裴国强. 无线激光通信中的多孔径接收技术研究[J]. 光学学报, 2011, 31(12): 22-28.
KeX Z, SongP, PeiG Q. Research on multi-aperture reception in wireless laser communication[J]. Acta Optica Sinica. 2011, 31(12): 22-28. (in Chinese)
7
DonM B, RoyS B, DanielV M. LDORA: A novel laser communications receiver array architecture[A]. Free-Space Laser Communication Technologies XVI[C]. San Jose, USA: SPIE, 2004. 56-64.
8
DonM B, LawrenceM C, DavidR H, et al. Design of an optical photon counting array receiver system for deep-space communications[J]. Proceedings of the IEEE, 2007, 95(10): 2059-2069.
9
DonM B, BryanS R. The lunar laser communication demonstration: NASA's first step toward very high data rate support of science and exploration missions[J]. Space Science Reviews, 2014, 185(1/4): 115-128.
10
VilnrotterV A, SrinivasanM. Adaptive detector arrays for optical communications receivers[J].IEEE Transactions on Communications, 2002, 50(7): 91-97.
11
ZhaoJ, ZhaoS H, ZhaoW H, et al. BER performance analysis of M-ary PPM over exponentiated Weibull distribution for airborne laser communications[J]. Journal of Optical Technology, 2017, 84(10): 658.
12
陈纯毅, 杨华民, 佟首峰, 等. 飞机对卫星激光通信上行链路建模与功率分析[J]. 通信学报, 2008(1): 125-131.
ChenC Y, YangH M, TongS F, et al. Modeling and power analysis for uplink of laser communication between airplane and satellite[J]. Journal on Communications. 2008(1): 125-131. (in Chinese)
13
McintyreR J. The distribution of gains in uniformly multiplying avalanche photodiodes: Theory [J]. IEEE Trans on Electron Devices, 1972, 19(6): 703-713.

Funding

Natural Science Foundation of Guangxi Zhuang Autonomous Region, China(2018GXNSFAA294056)
PDF(938 KB)

1615

Accesses

0

Citation

Detail

Sections
Recommended

/