
Airborne System Air Combat Application Reliability Evaluation Method Based on Multi-Parameter Coupling
ZHAO Jing-meng, HUANG Ning, ZHU Jie, ZHANG Xin
ACTA ELECTRONICA SINICA ›› 2022, Vol. 50 ›› Issue (9) : 2060-2067.
Airborne System Air Combat Application Reliability Evaluation Method Based on Multi-Parameter Coupling
The airborne system of military aircraft carries multiple applications that are interrelated with each other, such as air combat applications.But the current airborne system reliability evaluation methods evaluate system reliability by simply combining the subsystem reliability. The methods don't consider correlation of the internal and between subsystems, which unable to support the accurate evaluation of air combat application reliability. Therefore, this paper proposed the concept of airborne system air combat application reliability and the airborne system air combat application reliability evaluation method based on multi-parameter correlation. The application was decomposed to layers by application process and middleware application decomposition, then the parameters of each layer was extracted to form parameters system including application reliability parameters, sub-application reliability parameters, sensory parameters, middleware application related parameters, and specific service process related parameters. The application reliability evaluation model based on multi-parameters correlation was proposed by analyzing relationships between parameters which includes correlation and dependency. Finally, for airborne system air combat application, the reliability of air combat application is calculated. The innovations and advantages of proposed evaluation method are as follows. Firstly, the application was decomposed to layers by regular application process and middleware application decomposition, which could realize detailed description of application. Secondly, the airborne system air combat application reliability was accurately evaluated by considering correlation and dependency between parameters.
airborne system air combat application reliability / application decomposition / multi-parameter correlation / reliability evaluation {{custom_keyword}} /
表1 移相功分器的尺寸参数 (mm) |
参数 | 尺寸 | 参数 | 尺寸 | 参数 | 尺寸 |
---|---|---|---|---|---|
W 50 | 1.5 | Lt | 5.8 | L 1 | 12.0 |
Wt | 3.5 | L 2 | 16.3 | L 3 | 3.2 |
d | 0.5 | L 4 | 4.0 | L 5 | 8.0 |
L 6 | 6.2 | L 7 | 24.5 | D | 1.4 |
P | 0.9 | W 1 | 30.5 | W 2 | 54.5 |
W | 15.0 |
1 |
魏岳江. 空难事故原因透视——五花八门的罪魁祸首[J]. 航空世界, 2014, 2014(9): 66-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
黄宁. 网络可靠性及评估技术[M]. 北京: 国防工业出版社, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
刘锐. 基于AADL的综合模块化航电系统平台可靠性建模与GSPN分析方法[D]. 天津: 中国民航大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
周涛. 航空电子系统的可靠性分析[J]. 科技创新导报, 2016, 13(7): 19-22, 80.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王枫, 祁彦鹏, 傅正财. 基于改进故障模式与后果分析法的配电网可靠性评估[J]. 低压电器,2013, 2013(1): 37-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
邢贺亮. 基于多态T-S动态故障树的风电机组液压系统可靠性分析[D]. 秦皇岛: 燕山大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
工业互联网产业联盟. 5G与工业互联网融合应用发展白皮书[EB /OL].(2019-10-1)[2021-09-04].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
程江涛. 航空火力控制原理[M]. 北京: 国防工业出版社, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
隋金坪, 刘振, 魏玺章, 等. 基于随机PRI压缩感知雷达的速度假目标识别方法[J]. 电子学报, 2017, 45(1): 98-103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
梁韩立. 机载激光通信自动跟踪控制系统设计与实现[D]. 西安: 西安理工大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
孙龙. 机载敌我识别系统软件测试技术研究[D]. 广州: 华南理工大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
肖莎. 基于机载武器控制系统的发展研究[J]. 决策与信息(中旬刊), 2015, 2015(7): 200-200, 203.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
中国电子技术标准化研究所. 机载雷达通用要求/战术技术要求项目格式: GJB2137.3—1994[S]. 北京: 国防工业出版社, 1995: 8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
孙晨伟, 陶海红, 郭晓双, 等. 基于非均匀子阵的双和/三差通道同时抑制主副瓣干扰[J]. 电子学报, 2019, 47(4): 907-914.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
中国电子技术标准化研究所. 军用雷达测距机用模块规范: GJB4257—2001[S].北京: 国防工业出版社, 2002: 5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
中国电子技术标准化研究所. 军用雷达敌我识别器性能测试方法: GJB4203—2001[S]. 北京: 国防工业出版社, 2002: 10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
裴志诚, 单晓文, 王玉龙. 敌我识别系统及其对抗技术研究[J]. 通信对抗, 2011, (4): 52-55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
国防科学技术工业委员会. 飞机平视显示/武器瞄准系统通用规范: GJB189A—2003[S]. 北京: 国防工业出版社, 2003: 18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
中国人民解放军总参谋部. 航空武器装备主要作战使用性能论证要求: GJB4669—1994[S]. 北京: 国防工业出版社, 1995: 5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
刘泽坤, 宋贵宝, 罗亚民, 等. 小子样条件下命中精度Bayes序贯检验与递推估计[J]. 电光与控制, 2018, 25(9): 88-92.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |