Design of Dynamic S-Box Based on Perturbed Spatiotemporal Chaotic System

ZHAO Geng, MA Ying-jie, CHEN Lei, DONG You-heng, HOU Yan-li

ACTA ELECTRONICA SINICA ›› 2022, Vol. 50 ›› Issue (8) : 2037-2042.

PDF(7020 KB)
CIE Homepage  |  Join CIE  |  Login CIE  |  中文 
PDF(7020 KB)
ACTA ELECTRONICA SINICA ›› 2022, Vol. 50 ›› Issue (8) : 2037-2042. DOI: 10.12263/DZXB.20210200
CORRESPONDENCE

Design of Dynamic S-Box Based on Perturbed Spatiotemporal Chaotic System

Author information +

HeighLight

The distribution of traditional spatiotemporal chaotic system is relatively concentrated, and the uniformity of its generating sequence is poor. In this paper, a new spatiotemporal chaotic system with perturbed one-way coupled map lattice is constructed based on elementary cellular automata. The numerical simulation results of the distribution diagram and phase diagram of the system show that the perturbed system can improve the uniformity of the original system and increase the dynamic complexity of the system. A dynamic S-box generation algorithm is designed based on the homogenized disturbed spatiotemporal chaotic system, and the dynamic S-box is generated according to the dynamic update strategy. The statistical analysis of nonlinearity, strict avalanche criterion and differential uniformity of the S-box generated by the algorithm is carried out. The results show that the dynamic S-box generated by the homogenized disturbed spatiotemporal chaotic system is more secure.

Cite this article

Download Citations
ZHAO Geng , MA Ying-jie , CHEN Lei , DONG You-heng , HOU Yan-li. Design of Dynamic S-Box Based on Perturbed Spatiotemporal Chaotic System[J]. ACTA ELECTONICA SINICA, 2022, 50(8): 2037-2042. https://doi.org/10.12263/DZXB.20210200

References

1
LIC, ZHANGY, XIEE Y. When an attacker meets a cipher-image in 2018: A year in review[J]. Journal of Information Security and Applications, 2019, 48: 102361.
2
臧鸿雁, 黄慧芳. 基于均匀化混沌系统生成S盒的算法研究[J]. 电子与信息学报, 2017, 39(3): 575‐581.
ZANGHong-yan, HUANGHui-fang. Research on the algorithm of generating S-box based on homogenization chaotic system[J]. Journal of Electronics & Information Technology, 2017, 39(3): 575‐581. (in Chinese)
3
TANGG P, LIAOX F, CHENY. A novel method for designing S-boxes based on chaotic maps[J]. Chaos, Solitons and Fractals, 2005(23): 413‐419.
4
唐国坪. 混沌分组密码及其应用研究[D]. 重庆: 重庆大学, 2005.
TANGGuo-ping. Chaotic Block Cipher and Its Application Research[D]. Chongqing: Chongqing University, 2005. (in Chinese)
5
CHENG, CHENY, LIAOX F. An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps[J]. Chaos, Solitons and Fractals, 2017, (31): 571‐579.
6
WANGY, WONGK W, LIAOX, et al. A block cipher with dynamic S-boxes based on tent map[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(7): 3089‐3099.
7
FatihÖzkaynaka, Ahmet Bedri Özerb. A method for designing strong S-Boxes based on chaotic Lorenz system[J]. Physics Letters A, 2010 (374): 3733‐3738.
8
LIUYang, TONGXiaojun, MAJing. Image encryption algorithm based on hyper-chaotic system and dynamic S-box[J]. Multimedia Tools and Applications, 2016, 75(13): 7739‐7759.
9
韩丹丹, 闵乐泉, 赵耿, 张丽姣, 闫世杰. 一维鲁棒混沌映射及S盒的设计[J]. 电子学报, 2015, 43(9): 1770‐1775.
HANDan-dan, MINLe-quan, ZHAOGeng, ZHANGLi-jiao, YANShi-jie. One-dimensional robust chaotic mapping and the design of S-box[J]. Acta Electronica Sinica, 2015, 43(9): 1770‐1775. (in Chinese)
10
AkramBelazi, A Abd El-LatifAhmed. A simple yet efficient S-box method based on chaotic sine map[J]. Optik, 2017, 130: 1438‐1444.
11
MajidKhan, TariqShah, Syeda Iram Batool. Construction of S-box based on chaotic boolean functions and its application in image encryption[J]. Neural Computing and Applications, 2016, 27(3): 677‐685.
12
朱虹宏, 佟晓筠, 张淼, 等. 基于动态复合混沌系统的S盒设计[J]. 南京大学学报(自然科学), 2018, 54 (240): 61‐65.
ZHUHong-hong, TONGXiao-jun, ZHANGMiao, et al. S-box design based on dynamic compound chaotic system[J]. Journal of Nanjing University(Natural Sciences), 2018, 54 (240): 61‐65. (in Chinese)
13
ISLAMF U, LIUG J. Designing S-Box based on 4D-4wing hyperchaotic system[J]. 3D Research, 2017, 8(1): 1‐9.
14
ZHANGA, XUZ. Chaotic time series prediction using phase space reconstruction based conceptor network[J]. Cognitive Neurodynamics, 2020, 14(6): 849‐857.
15
PENGY, SUNK, HES. An improved return maps method for parameter estimation of chaotic systems[J]. International Journal of Bifurcation and Chaos, 2020, 30(4):2050058
16
LIS J, CHENG R, MOUX Q. On the dynamical degradation of digital piecewise linear chaotic maps[J]. International Journal of Bifurcation and Chaos, 2005, 15(10): 3119‐3151.
17
ZHOUP, DUJ, ZHOUK, et al. 2D mixed pseudo-random coupling PS map lattice and its application in S-box generation[J]. Nonlinear Dynamics, 2021, 103(1): 1151‐1166.
18
王永, 赵毅, GaoJerry, 等. 基于分段Logistic映射的二维耦合映像格子模型的密码学相关特性分析[J]. 电子学报, 2019, 47(3): 657‐663.
WANGYong, ZHAOYi, GAOJerry, et al. Analysis of cryptographic characteristics of two-dimensional coupled map lattice model based on piecewise Logistic mapping[J]. Acta Electronica Sinica, 2019, 47(3): 657‐663. (in Chinese)
19
NEUMANNJ, BurksA W, Theory of self-reproducing automata[J]. Mathematics of Computation, 1967, 21(100): 745.
20
WolframStephen. Cellular automata as models of complexity[J]. Nature, 1984, 311(5985): 419‐424.
21
LIW, PACKARDN. The Structure of the elementary cellular automata rule space[J]. Complex Systems, 1990, 4(3): 281‐297.

Funding

National Natural Science Foundation of China(61772047)
Advanced Discipline Construction Project of Universities in Beijing Municipality(3201017)
PDF(7020 KB)

Accesses

Citation

Detail

Sections
Recommended

/