
Summarization of Group Activity Recognition Algorithms Based on Deep Learning Frame
DENG Hai-gang, WANG Chuan-xu, LI Cheng-wei, LIN Xiao-meng
ACTA ELECTRONICA SINICA ›› 2022, Vol. 50 ›› Issue (8) : 2018-2036.
Summarization of Group Activity Recognition Algorithms Based on Deep Learning Frame
Group behavior recognition is currently a research hotspot in the field of computer vision, and has a wide range of applications in intelligent security monitoring, social role understanding, and sports video analysis. This article mainly reviews group behavior recognition algorithms based on deep learning framework. Firstly, by judging “whether a method including group member interaction relationship modeling”, it can be classified as “group behavior recognition without interaction relationship modeling(GBRWIR)” or “group behavior recognition based on interaction relationship description(GBRBIR)”. Secondly, because GBRWIR mainly focuses on how to design “calculation and purification of overall spatiotemporal characteristics of a group behavior sequence”, this article summarizes it as the following three typical algorithms, which are “multi-stream spatiotemporal feature calculation fusion”, “individual/group multi-level spatiotemporal feature calculation and merging”, and “group behavior spatiotemporal feature purification based on attention mechanism” respectively. Thirdly, for GBRWIR algorithms, depending on its different descriptions of interaction relationship, it can be summarized respectively as “based on group member global interaction relationship modeling”, “based on group division and subgroup interaction modeling”, and “modeling of interactions between core members”. Then, the data sets related to group behavior recognition are introduced, and the test performances of different recognition methods in each data set are compared and summarized. Finally, several challenging issues and future research directions are discussed, which respectively are the duality of group behavior category definition, the difficulty of interactive relationship modeling, the weakly supervised labeling and self-learning of group behavior recognition, and the changes of viewpoint and the comprehensive utilization of scene information.
group behavior recognition / group interaction relation / overall interaction / key person modeling / multi-stream hierarchical network {{custom_keyword}} /
表1 群组行为识别数据集 |
数据集名称 | 视频数量 | 片段数量 | 个人标签种类 | 群组标签种类 | 时间 | 视频来源 | 视频类型 |
---|---|---|---|---|---|---|---|
NUS-HGA[47] | — | 476 | — | 6 | 2009年 | Youtube | 监控数据集 |
BEHAVE[48] | — | 174 | — | 10 | 2009年 | Youtube | |
CAD | 25 | 2 500 | 6 | 5 | 2009年 | Youtube | |
CAED | 30 | 3 300 | 8 | 6 | 2011年 | Youtube | |
nCAD | 32 | 2 000 | 3 | 6 | 2012年 | Youtube | |
Volleyball | 55 | 4 830 | 9 | 8 | 2016年 | Youtube | 运动数据集 |
NCAA Basketball | 257 | 6 553 | — | 11 | 2016年 | Youtube | |
C-sports | 257 | 2 187 | 5 | 11 | 2020年 | Youtube | |
NBA dataset | 181 | 9 172 | — | 9 | 2020年 | Youtube |
表2 无交互关系建模的群组行为识别方法在不同数据集下的性能比较 |
Method | Date | Input | CAD | CADE | UCL Courtyard | Volleyball | NBA dataset | Multi-camera Futsal Game dataset |
---|---|---|---|---|---|---|---|---|
Choi[54] | 2012 | RGB | 80.2% | 83.0% | — | — | — | — |
DLM[55] | 2012 | RGB | 78.4% | — | — | — | — | — |
SIM[56] | 2015 | RGB | 83.40% | 90.23% | — | — | — | — |
Zappardino[49] | 2021 | RGB+OF | — | — | — | 91.00% | — | — |
XU[28] | 2020 | RGB+OF | 91.2% | — | — | 93.49% | — | — |
GLIL[29] | 2020 | RGB | 94.40% | — | — | 93.04% | — | — |
LARG[40] | 2019 | RGB | 92.60% | — | — | 91.00% | — | — |
DRGCN[57] | 2020 | RGB | 89.60% | — | — | 92.20% | — | — |
STPS[45] | 2018 | RGB | 95.70% | — | — | 90.00% | — | — |
GAIM[58] | 2020 | RGB | 90.60% | 91.20% | — | 91.90% | — | — |
CRM[59] | 2019 | RGB | 94.20% | — | — | 93.04% | — | — |
SAM[52] | 2020 | RGB | — | — | — | — | 47.50% | — |
表3 基于交互关系建模的方法在不同数据集下的性能比较 |
Method | Date | Input | CAD | CADE | UCL Courtyard | Volleyball | NBA dataset | Multi-camera futsal game dataset |
---|---|---|---|---|---|---|---|---|
Canon[7] | 2017 | RGB | — | — | — | — | — | 63.40% |
Gavrilyuk[60] | 2020 | RGB | 80.60% | — | — | — | — | — |
Region based multi-CNN[3] | 2019 | RGB,OF | 88.9% | — | — | 72.40% | — | — |
SRNN[61] | 2018 | RGB | — | — | — | 89.90% | — | — |
MCN[62] | 2018 | RGB,OF,Pose | 95.26% | — | — | 90.42% | — | — |
Ibrahim[6] | 2016 | RGB | 81.50% | — | — | 51.50% | — | — |
Wang[63] | 2017 | RGB | 89.40% | — | — | — | — | — |
PCTDM[37] | 2018 | RGB | 92.20% | — | — | 88.10% | — | — |
StagNet[26] | 2018 | RGB | — | 90.20% | 86.90% | 89.90% | — | — |
Lu[18] | 2019 | RGB | — | — | — | 91.90% | — | — |
Tang[19] | 2019 | RGB | 93.00% | — | — | 90.70% | — | — |
MLS-GAN[9] | 2018 | RGB | 91.20% | — | — | 92.40% | — | — |
Lu[64] | 2021 | RGB | 91.31% | — | — | 92.35% | — | — |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王传旭, 胡小悦, 孟唯佳, 等. 基于多流架构与长短时记忆网络的组群行为识别方法研究[J]. 电子学报, 2020, 48(4): 178-185.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
王传旭, 龚玉婷. 基于注意力机制的群组行为识别方法[J]. 数据采集与处理, 2019, 34(3): 38-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
丰艳, 张甜甜, 王传旭. 基于伪3D残差网络与交互关系建模的群组行为识别方法[J]. 电子学报, 2020, 48(7): 1269-1275.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
66 |
林晓萌. 基于图模型和深度学习网络的群组行为识别算法研究[D]. 青岛: 青岛科技大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
67 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
68 |
丰艳, 李鸽, 原春锋, 等. 基于时空注意力深度网络的视角无关性骨架行为识别[J]. 计算机辅助设计与图形学学报, 2018, 30(12): 2271-2277.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
69 |
吴培良, 杨霄, 毛秉毅, 孔令富, 侯增广. 一种视角无关的时空关联深度视频行为识别方法[J].电子与信息学报, 2019, 41(4): 904-910.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
70 |
DENG, Z W,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |