
Electromagnetic-Structural-Thermal Coupling Theory for Array Antenna: Present and Future
XU Peng-ying, LIN Ka-bin, HAN Bao-qing, WANG Zhi-hai, YU Kun-peng, YIN Kui-ying, LENG Guo-jun, WANG Yan, LI Zhi, MA Xiao-fei, WANG Cong-si
ACTA ELECTRONICA SINICA ›› 2022, Vol. 50 ›› Issue (12) : 2817-2853.
Electromagnetic-Structural-Thermal Coupling Theory for Array Antenna: Present and Future
Active phased array radar (APAR) services play a key role in national strategic security equipment and directly support essential tasks such as the national strategic missile defense, over-the-horizon detection, anti-stealth detection, and remote guided attack. APAR technology was used during war in the 1960s and became very popular worldwide because of the emergence of urgent military needs. This technology has essentially affected the world military. Compared with traditional single pulse and pulse Doppler radar technology, APAR has helped to advance radar technologies and had a profound and wide influence on the development of radar. Each antenna element in an APAR is connected with corresponding transmission/reception (T/R) modules. By controlling the phase shifter to change the phase distribution on the antenna aperture, the antenna can be electronically scanned without any mechanical rotations while still covering the whole airspace. Therefore, compared with the disadvantages of traditional mechanical scanning radar, such as a large scanning inertia, limited data rates, a small number of information channels, and difficulty meeting the requirements of adaptation and multifunctionality, APAR has unparalleled advantages such as flexible and non-inertial scanning completed within microseconds, multifunctionality, high reliability, large data rates, low radar cross-sections of radar reflection, strong adaptability and less affected by electromagnetic interference. With the significant demand of modern national defense, radar equipment is continuously being developed with over-the-horizon techniques, accurate detections, strong stealth capabilities, etc. APAR research is advancing toward high-frequency bands, high gains, high pointing accuracies and low sidelobe levels. The high electromagnetic performance of antennas is achieved through strict design parameter requirements such as rigidity, quality of being lightweight and high efficiency heat dissipation of structures. Moreover, various parameters of antennas show high-dimensional and multi-field coupling relationships. It is more sensitive to interference from harsh battlefield environments, which deteriorates the electric performance of antennas and reduces the detection power, guidance accuracy and battlefield survival ability of radars. APAR, known as the eye of the three armies, is a piece of typical equipment involving interdisciplinary disciplines. Its structure, thermal and electromagnetic interactions and mutual restriction coupling relationship are defined as the structural-electromagnetic-thermal (SET) coupling problem of APARs. The main coupling problems include the following. (1) Feed errors affect the antenna electromagnetic performance, including the amplitude and phase errors of the feed network of APARs; failure of the radiation element, temperature drifts of the thermal sensitive electronic components (such as phase shifter in T/R module) and mutual coupling of the antenna elements will cause the amplitude and phase errors of the feed current, which will lead to the deterioration of antenna electromagnetic performance. (2) The structure errors affect the antenna electromagnetic performance, and there are random errors in the manufacturing and assembly of APARs. Vibrations, shocks and thermal power consumptions during service cause deformations of the antenna array, which eventually results in position offsets of the radiation element and changes of the electromagnetic amplitude and phase distribution on the antenna array. Moreover, this results in the change of the transmitted beam and finally, seriously affects the antenna electrical performance. (3) Thermal issues affect the antenna electromagnetic performance, and thousands of T/R modules, which consume large amounts of thermal power, are installed on APARs. On the one hand, it will cause thermal deformation of the antenna array structure; on the other hand, it will also cause performance degradation of the device and finally lead to the deterioration of antenna electromagnetic performance. (4) Changes in the coupling ofstructural, thermal performance and electromagnetic performance will cause deterioration. In APARs, the electromagnetic amplitude and phase of the antenna array will distribute correspondingly under different duty cycle operating modes, which results in a change in the thermal power consumption and temperature distribution. Thus, the thermal deformation of the antenna array structure is affected. Therefore, the structural-electromagnetic-thermal coupling problem of APARs has become a bottleneck issue that hinders their steady development and further enhancements of their performance. In this paper, the development of APARs on different ground-based, shipborne, airborne, missile-borne and spaceborne platforms has been sorted, and the structural characteristics of APARs on each weapon platform have been analyzed. The influence of service loads on APARs in different battlefield environments of land, ocean, air and space has been summarized. Then, the mechanism analysis and modeling method of SET coupling of APARs affected by antenna structure errors, high-temperature ablations of the radome, feed errors of T/R modules and failures of antenna elements are discussed. Moreover, the application of SET coupling technologies in the fields of APAR manufacturing accuracy, high-efficiency heat dissipation, lightweight integrated optimization, sparse array design, etc., as well as the key guarantee technologies in service environments such as APAR condition monitoring, displacement field reconstruction, electrical performance compensation, are summarized. Finally, future research on SET coupling technologies and their application prospects in different research fields are discussed.
active phased array radar / structural-electromagnetic-thermal coupling / structural deformation / performance adjustment / design and manufacture / efficiency radiating {{custom_keyword}} /
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王从思, 康明魁, 王伟. 基于阵面变形误差的有源相控阵天线电性能分析[J]. 电子学报, 2014, 42(12): 2520-2526.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
段宝岩, 王猛. 微波天线多场耦合理论模型与多学科优化设计的研究[J]. 电子学报, 2013, 41(10): 2051-2060.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
GUY M. Fifth-generation fighter options[J]. Defence Review Asia, 2020, 14(2): 12-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
张玉洪, 张林让. 最佳稀布阵列的容差分析[J]. 西安电子科技大学学报, 1992, 19(1): 30-40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
韩如冰. 星载微带阵列天线结构热变形对电性能的影响分析[D]. 西安: 西安电子科技大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
康明魁. 有源相控阵天线机电热耦合建模、误差分析与优化设计[D]. 西安: 西安电子科技大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
王艳. 服役环境下有源相控阵天线机电耦合分析与电性能补偿方法研究[D]. 西安: 西安电子科技大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
王从思. 有源相控阵天线机电热耦合分析、设计与补偿[M]. 北京: 科学出版社, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
66 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
67 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
68 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
69 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
70 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
71 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
72 |
屈扬. 温度对微波T/R组件中关键器件电性能的影响分析[D]. 西安: 西安电子科技大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
73 |
段宝岩. 电子装备机电耦合理论、方法及应用[M]. 北京: 科学出版社, 2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
74 |
汪培进. 电源波纹对PD雷达性能的影响[J]. 现代雷达, 1997, 19(4): 79-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
75 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
76 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
77 |
杨昆. 电源纹波对低噪声放大器噪声性能的影响[J]. 微波与卫星通信, 1997, 6(1): 45-47.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
78 |
魏智. 脉冲调制波形畸变和电源纹波对雷达发射机质量的影响[J]. 现代雷达, 1992, 14(3): 81-91.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
79 |
张薇. 电源纹波对行波管放大器性能影响的研究[J]. 真空电子技术, 2014(4): 58-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
80 |
谭贤四, 武文, 孙合敏. 分析电源纹波对线性调频脉冲雷达的性能影响[J]. 无线电工程, 2001, 31(S1): 75-77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
81 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
82 |
高铁, 李建新, 郭燕昌. 相位量化对相控阵天线峰值副瓣电平影响的研究[J]. 中国空间科学技术, 1994, 14(1): 14-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
83 |
刘兆磊, 郭燕昌, 张光义. 相控阵天线适当随机馈相法对相位量化瓣的抑制[J]. 微波学报, 2008, 24(4): 53-55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
84 |
杨洲, 王积勤. 蒙特卡罗方法分析方向图的偏移[J]. 弹箭与制导学报, 2005, 25(S7): 353-354, 357.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
85 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
86 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
87 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
88 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
89 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
90 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
91 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
92 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
93 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
94 |
袁帅. 考虑参数不确定性的有源相控阵天线机电耦合建模与稳健设计[D]. 西安: 西安电子科技大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
95 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
96 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
97 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
98 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
99 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
100 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
101 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
102 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
103 |
张士选, 郑会利, 傅德民, 等. 阵列天线口径幅相误差分析[J]. 西安电子科技大学学报, 1998, 25(4): 525-528.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
104 |
周强锋, 赵书敏, 安宁, 等. 基于混沌粒子群算法的阵列天线容差分析[J]. 计算机仿真, 2011, 28(9): 211-214.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
105 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
106 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
107 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
108 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
109 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
110 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
111 |
修建雨. 雷达结构变形与探测性能的机电耦合建模与优化设计[D]. 西安: 西安电子科技大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
112 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
113 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
114 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
115 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
116 |
池越, 张鹏垒, 陈国鹰, 等. 基于免疫克隆选择算法的天线方向图综合技术研究[J]. 通信技术, 2009, 42(5): 71-73, 134.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
117 |
王伟锋. 阵列天线结构变形与RCS耦合建模及综合性能分析[D]. 西安: 西安电子科技大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
118 |
苏力争, 李智, 刘继鹏, 等. 大型相控阵雷达天线阵面结构精度分析及控制[J]. 火控雷达技术, 2017, 46(2): 75-79.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
119 |
胡雪梅, 康明魁, 王伟, 等. 六边形相控阵天线阵面误差的影响分析[J]. 北京航空航天大学学报, 2013, 39(12): 1629-1632, 1664.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
120 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
121 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
122 |
刘炳辉, 程春红, 袁海平. 雷达结构精度影响因素与测量的分析研究[J]. 电子机械工程, 2019, 35(1): 5-10, 28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
123 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
124 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
125 |
何海丹, 魏旭, 杨顺平, 等. Monte Carlo法在平板裂缝天线辐射缝导纳误差分析中的应用[J]. 电波科学学报, 2009, 24(2): 365-368.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
126 |
刘芃. 星载天线反射面结构多目标优化设计方法[C]//第二十一届全国复合材料学术会议(NCCM-21)论文集. 呼和浩特: 中国航空学会, 2020: 116-122.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
127 |
张帅, 龚书喜, 路宝, 等. 利用PSO同时优化阵列天线的辐射和散射特性[J]. 西安电子科技大学学报, 2010, 37(4): 726-730.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
128 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
129 |
丛丽丽. 基于各向异性超表面的宽带高增益低RCS mushroom天线[C]//2018年全国微波毫米波会议论文集(上册). 北京: 电子工业出版社, 2018: 350-353.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
130 |
张光义. 空间探测相控阵雷达[M]. 北京: 科学出版社, 2001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
131 |
张晓飞. LTCC多芯片功放组件微流道设计及散热特性研究[D]. 成都: 电子科技大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
132 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
133 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
134 |
祝薇, 陈新, 祝志祥, 等. 基于热电效应的新型制冷器件研究[J]. 智能电网, 2015, 3(9): 823-828.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
135 |
于惠. 基于微通道结构的间接液冷散热技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
136 |
王从思, 宋正梅, 康明魁, 等. 微通道冷板在有源相控阵天线上的应用[J]. 电子机械工程, 2013, 29(1): 1-4, 13.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
137 |
卢婷. 相控阵天线微小流道热流特性等效建模方法研究与热设计[D]. 成都: 电子科技大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
138 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
139 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
140 |
张彬. 基于机电热耦合的星载有源相控阵天线热设计方法[D]. 西安: 西安电子科技大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
141 |
张金平,李建新. 星载雷达有源相控阵天线轻量化技术[C]//2009年全国天线年会论文集. 北京: 电子工业出版社, 2009: 709-713.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
142 |
徐明明, 刘嘉山, 蔺祥宇, 等. 薄膜有源相控阵天线的设计与实现[C]//2017年全国天线年会论文集(上册). 北京: 电子工业出版社, 2017: 580-582.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
143 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
144 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
145 |
王新宽, 蒋媛, 熊召新. 基于时间调制的稀疏直线阵方向图综合[J]. 陕西理工大学学报(自然科学版), 2018, 34(6): 51-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
146 |
任刚强. 杂波环境中稀疏MIMO雷达宽带DOA估计[D]. 成都: 电子科技大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
147 |
唐思晴. 结合场景需求的雷达阵列与方向图优化设计[D]. 成都: 电子科技大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
148 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
149 |
杨志伟, 贺顺, 廖桂生, 等. 机翼共形阵列的阵元位置估计方法[J]. 电子学报, 2013, 41(10): 1969-1974.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
150 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
151 |
李龙军, 王布宏, 夏春和. 稀疏共形阵列天线方向图综合[J]. 电子学报, 2017, 45(1): 104-111.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
152 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
153 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
154 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
155 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
156 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
157 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
158 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
159 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
160 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
161 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
162 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
163 |
袁慎芳, 闫美佳, 张巾巾, 等. 一种适用于梁式机翼的变形重构方法[J]. 南京航空航天大学学报, 2014, 46(6): 825-830.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
164 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
165 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
166 |
李飞. 有源相控阵天线结构响应重构方法研究[D]. 西安: 西安电子科技大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
167 |
翟孟云, 严育林. 阵列天线理论导引[M]. 北京:国防工业出版社, 1980.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
168 |
张祖伦. 相控阵雷达中相位误差分析及补偿方法[J]. 雷达科学与技术, 2010, 8(2): 95-100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
169 |
王从思, 毛静, 周金柱, 等. 面向数字器件量化的变形有源相控阵天线幅相补偿量确定方法: CN106991211A[P]. 2017-07-28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
170 |
周云宵. 面向机电耦合的有源相控阵天线电性能计算、补偿和集成设计软件[D]. 西安: 西安电子科技大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
171 |
杨东萍, 未连保, 衣尚军. 相位误差对相控阵天线影响分析与改进[J]. 无线电工程, 2013, 43(3): 24-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
172 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
173 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
174 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
175 |
牛传峰, 吴旭, 赵东贺. 相控阵天线阵元失效的影响分析及补偿[J]. 无线电通信技术, 2013, 39(5): 44-46, 77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
176 |
潘超, 张任, 李瑞. 阵元失效对相控阵天线低副瓣的影响分析[J]. 舰船电子工程, 2016, 36(4): 83-85, 103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
177 |
汪一心, 朱桓, 徐晓文, 等. 阵列有源天线单元失效的影响与补偿[J]. 现代雷达, 1998, 20(4): 58-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
178 |
李建新, 高铁. 固态有源相控阵天线中的单元失效与容差分析[J]. 现代雷达, 1992, 14(6): 37-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
179 |
胡乃岗, 保宏, 连培园, 等. 大型相控阵天线结构与调整机构一体化设计[J]. 机械工程学报, 2015, 51(1): 196-202.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
180 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
181 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
182 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
183 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
184 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
185 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
186 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
187 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
188 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
189 |
程传兵, 王重海, 王洪升, 等. 陶瓷天线罩无机涂层的研究进展[J]. 硅酸盐通报, 2012, 31(5): 1161-1164, 1169.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
190 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
191 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
192 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
193 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
194 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
195 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
196 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
197 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
198 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
199 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
200 |
RÜTSCHLIN,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
201 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
202 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
203 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
204 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
205 |
陈金虎. 基于机电耦合的车载有源相控阵雷达服役载荷结构分析与优化设计[D]. 西安: 西安电子科技大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
206 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
207 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
208 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
209 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
210 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
211 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
212 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
213 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
214 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
215 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
216 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
217 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
218 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |