Electromagnetic-Structural-Thermal Coupling Theory for Array Antenna: Present and Future

XU Peng-ying, LIN Ka-bin, HAN Bao-qing, WANG Zhi-hai, YU Kun-peng, YIN Kui-ying, LENG Guo-jun, WANG Yan, LI Zhi, MA Xiao-fei, WANG Cong-si

ACTA ELECTRONICA SINICA ›› 2022, Vol. 50 ›› Issue (12) : 2817-2853.

PDF(4382 KB)
CIE Homepage  |  Join CIE  |  Login CIE  |  中文 
PDF(4382 KB)
ACTA ELECTRONICA SINICA ›› 2022, Vol. 50 ›› Issue (12) : 2817-2853. DOI: 10.12263/DZXB.20220414
60th Anniversary Special Issue

Electromagnetic-Structural-Thermal Coupling Theory for Array Antenna: Present and Future

Author information +

HeighLight

Active phased array radar (APAR) services play a key role in national strategic security equipment and directly support essential tasks such as the national strategic missile defense, over-the-horizon detection, anti-stealth detection, and remote guided attack. APAR technology was used during war in the 1960s and became very popular worldwide because of the emergence of urgent military needs. This technology has essentially affected the world military. Compared with traditional single pulse and pulse Doppler radar technology, APAR has helped to advance radar technologies and had a profound and wide influence on the development of radar. Each antenna element in an APAR is connected with corresponding transmission/reception (T/R) modules. By controlling the phase shifter to change the phase distribution on the antenna aperture, the antenna can be electronically scanned without any mechanical rotations while still covering the whole airspace. Therefore, compared with the disadvantages of traditional mechanical scanning radar, such as a large scanning inertia, limited data rates, a small number of information channels, and difficulty meeting the requirements of adaptation and multifunctionality, APAR has unparalleled advantages such as flexible and non-inertial scanning completed within microseconds, multifunctionality, high reliability, large data rates, low radar cross-sections of radar reflection, strong adaptability and less affected by electromagnetic interference. With the significant demand of modern national defense, radar equipment is continuously being developed with over-the-horizon techniques, accurate detections, strong stealth capabilities, etc. APAR research is advancing toward high-frequency bands, high gains, high pointing accuracies and low sidelobe levels. The high electromagnetic performance of antennas is achieved through strict design parameter requirements such as rigidity, quality of being lightweight and high efficiency heat dissipation of structures. Moreover, various parameters of antennas show high-dimensional and multi-field coupling relationships. It is more sensitive to interference from harsh battlefield environments, which deteriorates the electric performance of antennas and reduces the detection power, guidance accuracy and battlefield survival ability of radars. APAR, known as the eye of the three armies, is a piece of typical equipment involving interdisciplinary disciplines. Its structure, thermal and electromagnetic interactions and mutual restriction coupling relationship are defined as the structural-electromagnetic-thermal (SET) coupling problem of APARs. The main coupling problems include the following. (1) Feed errors affect the antenna electromagnetic performance, including the amplitude and phase errors of the feed network of APARs; failure of the radiation element, temperature drifts of the thermal sensitive electronic components (such as phase shifter in T/R module) and mutual coupling of the antenna elements will cause the amplitude and phase errors of the feed current, which will lead to the deterioration of antenna electromagnetic performance. (2) The structure errors affect the antenna electromagnetic performance, and there are random errors in the manufacturing and assembly of APARs. Vibrations, shocks and thermal power consumptions during service cause deformations of the antenna array, which eventually results in position offsets of the radiation element and changes of the electromagnetic amplitude and phase distribution on the antenna array. Moreover, this results in the change of the transmitted beam and finally, seriously affects the antenna electrical performance. (3) Thermal issues affect the antenna electromagnetic performance, and thousands of T/R modules, which consume large amounts of thermal power, are installed on APARs. On the one hand, it will cause thermal deformation of the antenna array structure; on the other hand, it will also cause performance degradation of the device and finally lead to the deterioration of antenna electromagnetic performance. (4) Changes in the coupling ofstructural, thermal performance and electromagnetic performance will cause deterioration. In APARs, the electromagnetic amplitude and phase of the antenna array will distribute correspondingly under different duty cycle operating modes, which results in a change in the thermal power consumption and temperature distribution. Thus, the thermal deformation of the antenna array structure is affected. Therefore, the structural-electromagnetic-thermal coupling problem of APARs has become a bottleneck issue that hinders their steady development and further enhancements of their performance. In this paper, the development of APARs on different ground-based, shipborne, airborne, missile-borne and spaceborne platforms has been sorted, and the structural characteristics of APARs on each weapon platform have been analyzed. The influence of service loads on APARs in different battlefield environments of land, ocean, air and space has been summarized. Then, the mechanism analysis and modeling method of SET coupling of APARs affected by antenna structure errors, high-temperature ablations of the radome, feed errors of T/R modules and failures of antenna elements are discussed. Moreover, the application of SET coupling technologies in the fields of APAR manufacturing accuracy, high-efficiency heat dissipation, lightweight integrated optimization, sparse array design, etc., as well as the key guarantee technologies in service environments such as APAR condition monitoring, displacement field reconstruction, electrical performance compensation, are summarized. Finally, future research on SET coupling technologies and their application prospects in different research fields are discussed.

Cite this article

Download Citations
XU Peng-ying , LIN Ka-bin , HAN Bao-qing , WANG Zhi-hai , YU Kun-peng , YIN Kui-ying , LENG Guo-jun , WANG Yan , LI Zhi , MA Xiao-fei , WANG Cong-si. Electromagnetic-Structural-Thermal Coupling Theory for Array Antenna: Present and Future[J]. ACTA ELECTONICA SINICA, 2022, 50(12): 2817-2853. https://doi.org/10.12263/DZXB.20220414

References

1
BROOKNERE. Advances and breakthroughs in radars and phased-arrays[C]//2016 IEEE International Symposium on Phased Array Systems and Technology(PAST). Waltham: IEEE, 2016: 1-9.
2
OBUKHOVETSV. Some new trends in phased antenna array designing[C]//2019 Radiation and Scattering of Electromagnetic Waves(RSEMW). Divnomorskoe: IEEE, 2019: 20-23.
3
HERDJ S, CONWAYM D. The evolution to modern phased array architectures[J]. Proceedings of the IEEE, 2016, 104(3): 519-529.
4
PARKERD, ZIMMERMANND C. Phased arrays - Part 1: Theory and architectures[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 678-687.
5
王从思, 康明魁, 王伟. 基于阵面变形误差的有源相控阵天线电性能分析[J]. 电子学报, 2014, 42(12): 2520-2526.
WANGC S, KANGM K, WANGW. On coupled structural-electromagnetic model of active phased array antennas with array plane structural distortion errors[J]. Acta Electronica Sinica, 2014, 42(12): 2520-2526. (in Chinese)
6
KOZAKOFFD J. Analysis of Radome-Enclosed Antennas[M]. 2nd Edition. Boston: Artech House, 2010.
7
ROCKJ C, MULLINSJ H, BOOTHJ P, et al. The past, present, and future of electronically-steerable phased arrays in defense applications[C]//2008 IEEE Aerospace Conference. Big Sky: IEEE, 2008: 1-7.
8
WANGC S, DUANB Y, ZHANGF S, et al. Analysis of performance of active phased array antennas with distorted plane error[J]. International Journal of Electronics, 2009, 96(5): 549-559.
9
段宝岩, 王猛. 微波天线多场耦合理论模型与多学科优化设计的研究[J]. 电子学报, 2013, 41(10): 2051-2060.
DUANB Y, WANGM. Research of the theoretical model of multi-field coupling and multidisciplinary optimization design on microwave antennas[J]. Acta Electronica Sinica, 2013, 41(10): 2051-2060. (in Chinese)
10
ARNOLDE J, YANJ B, HALER D, et al. Effects of vibration on a wing-mounted ice-sounding antenna array[J]. IEEE Antennas and Propagation Magazine, 2014, 56(6): 41-52.
11
KANGM K, WANGC S, YINL, et al. Performance prediction for array antennas with element position error based on coupled structural-electromagnetic model[C]//Fifth Asia International Symposium on Mechatronics(AISM 2015). Guilin: Institution of Engineering and Technology, 2015: 34-38.
12
QUANS J, QIANW P, GUQ J, et al. Radar-communication integration: An overview[C]//The 7th IEEE/International Conference on Advanced Infocomm Technology. Fuzhou: IEEE, 2014: 98-103.
13
WANGC S, WANGY, YUANS, et al. A compensation method for active phased array antennas: Using a strain-electromagnetic coupling model[J]. IEEE Antennas and Propagation Magazine, 2021, 63(4): 78-88.
14
WEIX Y, MIAOE M, WANGW, et al. Real-time thermal deformation compensation method for active phased array antenna panels[J]. Precision Engineering, 2019, 60: 121-129.
15
LUG Y, ZHOUJ Y, CAIG P, et al. Studies of thermal deformation and shape control of a space planar phased array antenna[J]. Aerospace Science and Technology, 2019, 93: 105311.
16
AMIRZ, BIJANA A. GA-based approach to phase compensation of large phased array antennas[J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 723-730.
17
ENDERJ H G, WILDENH, NICKELU, et al. Progress in phased-array radar applications[C]//First European Radar Conference (2004 EURAD). Amsterdam: IEEE, 2004: 113-116.
18
WANGC S, WANGY, LIANP Y, et al. Space phased array antenna developments: A perspective on structural design[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(7): 44-63.
19
LUDWIGM, BUCKC H, COROMINAF, et al. Status and trends for space-borne phased array radar[C]//IEEE MTT-S International Microwave Symposium Digest. Long Beach: IEEE, 2005: 1619-1622.
20
HOMMELH, FELDLEH P. Current status of airborne active phased array(AESA) radar systems and future trends[C]//IEEE MTT-S International Microwave Symposium Digest. Long Beach: IEEE, 2005: 1449-1452.
21
FELDLEH P. State of the active phased array technology[C]//2007 2nd International ITG Conference on Antennas. Munich: IEEE, 2007: 241-245.
22
JOHNSONN L. U.S. space surveillance[J]. Advances in Space Research, 1993, 13(8): 5-20.
23
CUIR, PANJ F, ZHUJ. Research on jamming effect evaluation method of AN/TPY-2 radar using set pair approach degree[C]//Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing. Sanya: ACM, 2019: 1-5.
24
PODVIGP. History and the current status of the Russian early-warning system[J]. Science & Global Security, 2002, 10(1): 21-60.
25
OTANIY, KOHTAKEN, OHKAMIY. Dual-use system architecture for a space situational awareness system in Japan[C]//2013 IEEE Aerospace Conference. Big Sky: IEEE, 2013: 1-8.
26
DRYERS, LEVINEE, PELEGM, et al. EL/M 2080 ATBM early warning and fire control radar system[C]//Proceedings of International Symposium on Phased Array Systems and Technology. Boston: IEEE, 1996: 11-16.
27
ZHANGZ, WUJ, DAIJ Y, et al. Optimal path planning with modified A-Star algorithm for stealth unmanned aerial vehicles in 3D network radar environment[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(1): 72-81.
28
ROULETTEJ F, SKRIVSETHK A. Coherent data collection and analysis capability for the AN/SPS-48E radar[J]. Johns Hopkins APL Technical Digest, 1997, 18(3): 389.
29
STIGLITZM R, BLANCHARDC. Practical phased-array antenna systems[J]. Microwave Journal, 1992, 35(3): 168-169.
30
FONTANAW J, KRUEGERK H. AN/SPY-3: The navy's next-generation force protection radar system[C]//IEEE International Symposium on Phased Array Systems and Technology. Boston: IEEE, 2003: 594-603.
31
O'HAVERK W, BARKERC K, DOCKERYG D, et al. Radar development for air and missile defense[J]. Johns Hopkins APL Technology Digest, 2018, 34(2): 140-153.
32
MACHIV. 3D modeling could speed procurement of navy destroyer[J]. National Defense, 2018, 102(773): 25-27.
33
CHERNEYAKV S, IMMOREEVI Y, VOVSHINB M. Radar in the Soviet Union and Russia: A brief historical outline[J]. IEEE Aerospace and Electronic Systems Magazine, 2003, 18(12): 8-12.
34
DEDDENG. SMART-L multibeam radar[C]//First European Radar Conference. Amsterdam: IEEE, 2004: 17-20.
35
KIRCHBERGERS. The PLA Navy's Capability Profile[M]//Global Power Shift. Berlin: Springer, 2015: 171-254.
36
HOMMELH, FELDLEH P. Current status of airborne active phased array (AESA) radar systems and future trends[C]//IEEE MTT-S International Microwave Symposium Digest. Amsterdam: IEEE, 2004: 1449-1452.
37
GAOT H, WEIQ, WANGP D, et al. The development status and trend of airborne multifunctional radar[C]//2021 IEEE International Conference on Artificial Intelligence and Industrial Design. Guangzhou: IEEE, 2021: 327-330.
38
REEHD. Flying combat in the 21st century[J]. Aviation Week & Space Technology, 2000, 152(1): 57-57.
39
MYERSN. The Russian aerospace force[J]. Security Forum Wydawnictwo Naukowe Akademii WSB, 2018, 2(1): 91-103.
40
GUY M. Fifth-generation fighter options[J]. Defence Review Asia, 2020, 14(2): 12-18.
41
CHHATWALR S. “Far Vision” for the dragon: China's indigenous AWACS projects[J]. Vayu Aerospace and Defence Review, 2018(5): 53-57.
42
PENGZ. Avionics system of E-2D and its roles in future network-centric operation[J]. Telecommunication Engineering, 2014, 54(5): 689-694.
43
WEAVERJ M. E3A/D Airborne Warning and Control Systems(AWACS) Component[M]//NATO in Contemporary Times. Cham: Springer International Publishing, 2021: 101-111.
44
MOISEEVG V, POLUBOYARINOVP S. Multicriteria choice of a carrier aircraft and main design parameters of an air launcher decoy[J]. Russian Aeronautics(Iz VUZ), 2011, 54(1): 1-8.
45
MATHESWARANV. New generation air-to-air missiles(AAMs)[J]. Vayu Aerospace and Defence Review, 2015, 1(1): 78.
46
KUMARA. Indigenous missiles augment Indian army firepower[J]. Vayu Aerospace and Defence Review, 2020, 1(1): 67-69.
47
FRANCESCHETTIG, LANARIR. Synthetic Aperture Radar Processing[M]. Boca Raton: CRC Press, 2018.
48
NGA H M, GEL L, DUZ Y, et al. Satellite radar interferometry for monitoring subsidence induced by longwall mining activity using Radarsat-2, Sentinel-1 and ALOS-2 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 61: 92-103.
49
FORNAROG, SERAFINOF, REALED. SAR tomography: Application examples[C]//8th European Conference on Synthetic Aperture Radar. Aachen: VDE, 2010: 1-2.
50
LIL, ZHANGF, SHAOY, et al. Airborne SAR radiometric calibration based on improved sliding window integral method[J]. Sensors(Basel, Switzerland), 2022, 22(1): 320.
51
ARNOLDE J, YANJ B, HALER D, et al. Identifying and compensating for phase center errors in wing-mounted phased arrays for ice sheet sounding[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6): 3416-3421.
52
TAKAHSHIT, NAKAMOTON, OHTSUKAM, et al. A simple on-board calibration method and its accuracy for mechanical distortions of satellite phased array antennas[C]//3rd European Conference on Antennas and Propagation. Berlin: IEEE, 2009: 1573-1577.
53
WANGH S C. Performance of phased-array antennas with mechanical errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 535-545.
54
OSSOWSKAA, KIMJ H, WIESBECKW. Influence of mechanical antenna distortions on the performance of the HRWS SAR system[C]//2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE, 2007: 2152-2155.
55
ANSELMIN, SALUCCIM, ROCCAP, et al. Power pattern sensitivity to calibration errors and mutual coupling in linear arrays through circular interval arithmetics[J]. Sensors(Basel, Switzerland), 2016, 16(6): E791.
56
ROCCAP, POLIL, ANSELMIN, et al. Predicting antenna pattern degradations in microstrip reflectarrays through interval arithmetic[J]. IET Microwaves, Antennas & Propagation, 2016, 10(8): 817-826.
57
张玉洪, 张林让. 最佳稀布阵列的容差分析[J]. 西安电子科技大学学报, 1992, 19(1): 30-40.
ZHANGY H, ZHANGL R. Tolerances of optimum thining linear arrays[J]. Journal of Xidian University, 1992, 19(1): 30-40. (in Chinese)
58
BAIQ, LEEH J, FORDK L, et al. Switchable textile microstrip antenna for on/off-body communications and shape distortion study[C]//2012 IEEE Asia-Pacific Conference on Antennas and Propagation. Singapore: IEEE, 2012: 114-115.
59
GENGJ P, LIJ J, JINR H, et al. The development of curved microstrip antenna with defected ground structure[J]. Progress in Electromagnetics Research, 2009, 98: 53-73.
60
WUB I, EHRENBERGI. Ultra conformal patch antenna array on a doubly curved surface[C]//2013 IEEE International Symposium on Phased Array Systems and Technology. Waltham: IEEE, 2013: 792-798.
61
韩如冰. 星载微带阵列天线结构热变形对电性能的影响分析[D]. 西安: 西安电子科技大学, 2014.
HANR B. Analysis of Electronical Performances of Spaceborne Microstrip Array Antenna with Thermal Deformation[D]. Xi'an: Xidian University, 2014. (in Chinese)
62
康明魁. 有源相控阵天线机电热耦合建模、误差分析与优化设计[D]. 西安: 西安电子科技大学, 2017.
KANGM K. Coupled Structural-Electromagnetic-Thermal Modelling, Error Analysis and Optimization Design of Active Phased Array Antennas[D]. Xi'an: Xidian University, 2017. (in Chinese)
63
王艳. 服役环境下有源相控阵天线机电耦合分析与电性能补偿方法研究[D]. 西安: 西安电子科技大学, 2019.
WANGY. Electromechanical Coupling Analysis and Performance Compensation of Active Phased Array Antennas in Operating Environment[D]. Xi'an: Xidian University, 2019. (in Chinese)
64
王从思. 有源相控阵天线机电热耦合分析、设计与补偿[M]. 北京: 科学出版社, 2021.
WANGC S. Analysis, Design and Compensation of Electromechanical Thermal Coupling of Active Phased Array Antenna[M]. Beijing: Science Press, 2021. (in Chinese)
65
GURFILP, KASDINN J. Improving missile guidance performance by in-flight two-step nonlinear estimation of radome aberration[J]. IEEE Transactions on Control Systems Technology, 2004, 12(4): 532-541.
66
HUSAINM, JAMSHEDS, QURESHIN. Transient aero-thermal analysis of high speed vehicles using CFD[C]//Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology(IBCAST). Islamabad: IEEE, 2012: 171-175.
67
QINY J, HEJ G. Analysis of tangent oval radome based on Matlab[C]//2005 Asia-Pacific Microwave Conference Proceedings. Suzhou: IEEE, 2005: 3-6.
68
WECKESSERL B. Radome aerodynamic heating effects on boresight error[C]//Proceedings of 15th Symposium on Electromagnetic Windows. Atlanta: Georgia Institute of Technology, 1980: 97-101.
69
NAIRP R U, JHAR M. Temperature dependent EM performance predictions of dielectric slab based on inhomogeneous planar layer model[C]//Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. Chicago: IEEE, 2012: 1-2.
70
NAIRR U, JHAR M. Electromagnetic design and performance analysis of airborne radomes: Trends and perspectives[J]. IEEE Antennas and Propagation Magazine, 2014, 56(4): 276-298.
71
ZHONGL, FUG C, LUJ L. A research for influence of temperature on T/R module in radar[C]//2015 Prognostics and System Health Management Conference(PHM). Beijing: IEEE, 2015: 1-9.
72
屈扬. 温度对微波T/R组件中关键器件电性能的影响分析[D]. 西安: 西安电子科技大学, 2014.
QUY. Analysis on the Effect of Temperature on Electrical Properties of Microwave Transmit/Receive Modules' Key Components[D]. Xi'an: Xidian University, 2014. (in Chinese)
73
段宝岩. 电子装备机电耦合理论、方法及应用[M]. 北京: 科学出版社, 2011.
DUANB Y. Theory, Methods and Applications on Electromechanical Coupling of Electronic Equipment[M]. Beijing: Science Press, 2011. (in Chinese)
74
汪培进. 电源波纹对PD雷达性能的影响[J]. 现代雷达, 1997, 19(4): 79-87.
WANGP J. The effects of power supply ripple on PD radar performance[J]. Modern Radar, 1997, 19(4): 79-87. (in Chinese)
75
WONGK S, RICCIARDIG F. Characterization of amplitude modulation bias coupling for solid-state high-power amplifiers[C]//2013 IEEE International Symposium on Phased Array Systems and Technology. Waltham: IEEE, 2013: 64-68.
76
ABED K, PERSHINGD E, NGUYENK T, et al. Experimental study of phase pushing in a fundamental-mode multiple-beam klystron[J]. IEEE Transactions on Electron Devices, 2007, 54(5): 1253-1258.
77
杨昆. 电源纹波对低噪声放大器噪声性能的影响[J]. 微波与卫星通信, 1997, 6(1): 45-47.
YANGK. Influence of power supply ripple on noise performance of low noise amplifier[J]. Wireless Communication Technology, 1997, 6(1): 45-47. (in Chinese)
78
魏智. 脉冲调制波形畸变和电源纹波对雷达发射机质量的影响[J]. 现代雷达, 1992, 14(3): 81-91.
WEIZ. The effects of the pulse modulation shape distortion and the power supply ripple on the radar transmitter performance[J]. Modern Radar, 1992, 14(3): 81-91. (in Chinese)
79
张薇. 电源纹波对行波管放大器性能影响的研究[J]. 真空电子技术, 2014(4): 58-61.
ZHANGW. Research into power-supply ripple affects TWT amplifier[J]. Vacuum Electronics, 2014(4): 58-61. (in Chinese)
80
谭贤四, 武文, 孙合敏. 分析电源纹波对线性调频脉冲雷达的性能影响[J]. 无线电工程, 2001, 31(S1): 75-77.
TANX S, WUW, SUNH M. Analyze the influence of power ripple on the performance of LFM pulse radar[J]. Radio Engineering of China, 2001, 31(S1): 75-77. (in Chinese)
81
KAMODAH, TSUMOCHIJ, KUKIT, et al. A study on antenna gain degradation due to digital phase shifter in phased array antennas[J]. Microwave and Optical Technology Letters, 2011, 53(8): 1743-1746.
82
高铁, 李建新, 郭燕昌. 相位量化对相控阵天线峰值副瓣电平影响的研究[J]. 中国空间科学技术, 1994, 14(1): 14-19.
GAOT, LIJ X, GUOY C. On effect of phase quantization upon peak sidelobe level in phasedarray antennas[J]. Chinese Space Science and Technology, 1994, 14(1): 14-19. (in Chinese)
83
刘兆磊, 郭燕昌, 张光义. 相控阵天线适当随机馈相法对相位量化瓣的抑制[J]. 微波学报, 2008, 24(4): 53-55.
LIUZ L, GUOY C, ZHANGG Y. Appropriate random phasing techniques to reduce phase quantization side-lobes in phased array antennas[J]. Journal of Microwaves, 2008, 24(4): 53-55. (in Chinese)
84
杨洲, 王积勤. 蒙特卡罗方法分析方向图的偏移[J]. 弹箭与制导学报, 2005, 25(S7): 353-354, 357.
YANGZ, WANGJ Q. The analysis in offset of antenna pattern with Monte-Carlo method[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(S7): 353-354, 357. (in Chinese)
85
ROCCAP, MANICAL, ANSELMIN, et al. Analysis of the pattern tolerances in linear arrays with arbitrary amplitude errors[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 639-642.
86
ANSELMIN, MANICAL, ROCCAP, et al. Tolerance analysis of antenna arrays through interval arithmetic[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(11): 5496-5507.
87
HEG L, GAOX, ZHOUH. Matrix-based interval arithmetic for linear array tolerance analysis with excitation amplitude errors[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3516-3520.
88
TENUTIL, ANSELMIN, ROCCAP, et al. Minkowski sum method for planar arrays sensitivity analysis with uncertain-but-bounded excitation tolerances[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 167-177.
89
PENGB L, PRIEBES, KÜRNERT. Effects of phase shift errors on the antenna directivity of phased arrays in indoor terahertz communications[C]//2014 11th International Symposium on Wireless Communications Systems (ISWCS). Barcelona: IEEE, 2014: 355-359.
90
KIMJ A, LEEJ H. Performance degradation in cross-eye jamming due to amplitude/phase instability between jammer antennas[J]. Sensors, 2021, 21(15): 5027.
91
DUJ X, ROBLINC. Statistical modeling of disturbed antennas based on the polynomial chaos expansion[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1843-1846.
92
ZHUJ, WUQ. Modeling two-element antenna array with random phase errors using analytic, Monte Carlo and polynomial chaos expansion methods[C]//2019 IEEE 6th International Symposium on Electromagnetic Compatibility. Nanjing: IEEE, 2019: 1-3.
93
ZHUJ, WUQ. Analysis of planar antenna arrays with random feeding phase errors using hybrid polynomial chaos expansion and interpolation methods[C]//2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT). Nanjing: IEEE, 2021: 1-3.
94
袁帅. 考虑参数不确定性的有源相控阵天线机电耦合建模与稳健设计[D]. 西安: 西安电子科技大学, 2020.
YUANS. Coupled Structural-Electromagnetic Modeling and Robust Design of Active Phased Array Antennas Considering Parameter Uncertainty[D]. Xi'an: Xidian University, 2020. (in Chinese)
95
RUZEJ. The effect of aperture errors on the antenna radiation pattern[J]. Il Nuovo Cimento(1943-1954), 1952, 9(3): 364-380.
96
ELLIOTTR. Mechanical and electrical tolerances for two-dimensional scanning antenna arrays[J]. IRE Transactions on Antennas and Propagation, 1958, 6(1): 114-120.
97
RONDINELLIL. Effects of random errors on the performance of antenna arrays of many elements[C]//1958 IRE International Convention Record. New York: IEEE, 1966: 174-189.
98
KAPLANP. Predicting antenna sidelobe performance[J]. Microwave Journal, 1986, 29(9): 201-204, 206.
99
HSIAOJ. Array Sidelobes, Error Tolerance, Gain, and Beamwidth[R]. Washington: Naval Research Lab, 1984.
100
LANGEM. Impact of statistical errors on active phased-array antenna performance[C]//MILCOM 2007 - IEEE Military Communications Conference. Orlando: IEEE, 2007: 1-5.
101
LEEJ, LEEY, KIMH. Decision of error tolerance in array element by the Monte Carlo method[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(4): 1325-1331.
102
SCHEDIWYS W, PRICED, DULWICHF, et al. A quantitative analysis of how phase errors affect the beam quality of phased arrays[C]//2010 IEEE International Symposium on Phased Array Systems and Technology. Waltham: IEEE, 2010: 256-260.
103
张士选, 郑会利, 傅德民, 等. 阵列天线口径幅相误差分析[J]. 西安电子科技大学学报, 1998, 25(4): 525-528.
ZHANGS X, ZHENGH L, FUD M, et al. Aperture amplitude and phase error analysis of the antenna array[J]. Journal of Xidian University, 1998, 25(4): 525-528. (in Chinese)
104
周强锋, 赵书敏, 安宁, 等. 基于混沌粒子群算法的阵列天线容差分析[J]. 计算机仿真, 2011, 28(9): 211-214.
ZHOUQ F, ZHAOS M, ANN, et al. Tolerance analysis of array antennas by chaos-particle swarm optimization[J]. Computer Simulation, 2011, 28(9): 211-214. (in Chinese)
105
FENGZ Y, FANGZ X, WEIZ Q, et al. Joint radar and communication: A survey[J]. China Communications, 2020, 17(1): 1-27.
106
BLAKEL V. Recent advancements in basic radar range calculation technique[J]. IRE Transactions on Military Electronics, 1961, MIL-5(2): 154-164.
107
SKOLNIKM. An Introduction to Impulse Radar[R]. Washington DC: Naval Research Lab, 1990.
108
BRENNANL E, REEDI S. Optimum processing of unequally spaced radar pulse trains for clutter rejection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1968, AES-4(3): 474-477.
109
NESTERW. A study of tracking accuracy in monopulse phased arrays[J]. IRE Transactions on Antennas and Propagation, 1962, 10(3): 237-246.
110
HSIAOJ K. Design of error tolerance of a phased array[J]. Electronics Letters, 1985, 21(19): 834-836.
111
修建雨. 雷达结构变形与探测性能的机电耦合建模与优化设计[D]. 西安: 西安电子科技大学, 2019.
XIUJ Y. Mechanical-Electromagnetic Coupling Modeling and Optimization Design of Radar Structural Deformation and Detection Performance[D]. Xi'an: Xidian University, 2019. (in Chinese)
112
ELDEKA A. Ultrawideband double rhombus antenna with stable radiation patterns for phased array applications[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(1): 84-91.
113
LUB, GONGS X, ZHANGS, et al. Optimum spatial arrangement of array elements for suppression of grating-lobes of radar cross section[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 114-117.
114
YUANN, YEOT S, NIEX C, et al. A fast analysis of scattering and radiation of large microstrip antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(9): 2218-2226.
115
TANAKAT, NISHIOKAY, INASAWAY, et al. MoM analysis of radiation and scattering of broadband array Antenna[C]//2013 International Symposium on Electromagnetic Theory. Hiroshima: IEEE, 2013: 804-807.
116
池越, 张鹏垒, 陈国鹰, 等. 基于免疫克隆选择算法的天线方向图综合技术研究[J]. 通信技术, 2009, 42(5): 71-73, 134.
CHIY, ZHANGP L, CHENG Y, et al. Pattern synthesis based on immune clone selection algorithm[J]. Communications Technology, 2009, 42(5): 71-73, 134. (in Chinese)
117
王伟锋. 阵列天线结构变形与RCS耦合建模及综合性能分析[D]. 西安: 西安电子科技大学, 2014.
WANGW F. Coupling Structural-RCS Modeling and Integration Performance Analysis for Array Antennas with Mechanical Distortion[D]. Xi'an: Xidian University, 2014. (in Chinese)
118
苏力争, 李智, 刘继鹏, 等. 大型相控阵雷达天线阵面结构精度分析及控制[J]. 火控雷达技术, 2017, 46(2): 75-79.
SUL Z, LIZ, LIUJ P, et al. Analysis and control of large phased-array radar antenna array structure precision[J]. Fire Control Radar Technology, 2017, 46(2): 75-79. (in Chinese)
119
胡雪梅, 康明魁, 王伟, 等. 六边形相控阵天线阵面误差的影响分析[J]. 北京航空航天大学学报, 2013, 39(12): 1629-1632, 1664.
HUX M, KANGM K, WANGW, et al. On influence of structural errors for hexagonal phased array antennas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12): 1629-1632, 1664. (in Chinese)
120
WANGH S C. Performance of phased-array antennas with mechanical errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 535-545.
121
ZAITSEVE, HOFFMANJ. Phased array flatness effects on antenna system performance[C]//2010 IEEE International Symposium on Phased Array Systems and Technology. Waltham: IEEE, 2010: 121-125.
122
刘炳辉, 程春红, 袁海平. 雷达结构精度影响因素与测量的分析研究[J]. 电子机械工程, 2019, 35(1): 5-10, 28.
LIUB H, CHENGC H, YUANH P. Analysis and research of effect factor and measurement of radar structure precision[J]. Electro-Mechanical Engineering, 2019, 35(1): 5-10, 28. (in Chinese)
123
MOBREMM. Methods of analyzing surface accuracy of large antenna structures due to manufacturing tolerances[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003: 1453.
124
CUIQ F, LIM, PENGZ L, et al. Configuration Optimization and Surface Accuracy Investigation of Solid Surface Deployable Reflector[M]//Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems. Singapore: Springer, 2016: 672-684.
125
何海丹, 魏旭, 杨顺平, 等. Monte Carlo法在平板裂缝天线辐射缝导纳误差分析中的应用[J]. 电波科学学报, 2009, 24(2): 365-368.
HEH D, WEIX, YANGS P, et al. Error analysis of admittance of radiating slot in planar slotted-waveguide array antennas with Monte Carlo method[J]. Chinese Journal of Radio Science, 2009, 24(2): 365-368. (in Chinese)
126
刘芃. 星载天线反射面结构多目标优化设计方法[C]//第二十一届全国复合材料学术会议(NCCM-21)论文集. 呼和浩特: 中国航空学会, 2020: 116-122.
LIUP. Multi-objective optimization design method of satellite antenna reflector[C]//Proceedings of the 21st National Composite Materials Academic Conference(NCCM-21). Hohhot: Chinese Society of Aeronautics and Astronautics, 2020: 116-122. (in Chinese)
127
张帅, 龚书喜, 路宝, 等. 利用PSO同时优化阵列天线的辐射和散射特性[J]. 西安电子科技大学学报, 2010, 37(4): 726-730.
ZHANGS, GONGS X, LUB, et al. Optimizing both radiation and scattering characteristics of the array antenna utilizing PSO[J]. Journal of Xidian University, 2010, 37(4): 726-730. (in Chinese)
128
WANGW T, GONGS X, WANGX, et al. Differential evolution algorithm and method of moments for the design of low-RCS antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 295-298.
129
丛丽丽. 基于各向异性超表面的宽带高增益低RCS mushroom天线[C]//2018年全国微波毫米波会议论文集(上册). 北京: 电子工业出版社, 2018: 350-353.
CONGL L. A broadband high-gain low-RCS mushroom antenna using anisotropic metasurface[C]//Proceedings of the 2018 National Microwave and Millimeter Wave Conference(Volume 1). Beijing: Publishing House of Electronics Industry, 2018: 350-353. (in Chinese)
130
张光义. 空间探测相控阵雷达[M]. 北京: 科学出版社, 2001.
ZHANGG Y. Space Detection Phased Array Radar[M]. Beijing: Science Press, 2001. (in Chinese)
131
张晓飞. LTCC多芯片功放组件微流道设计及散热特性研究[D]. 成都: 电子科技大学, 2017.
ZHANGX F. Design and Heat Dissipation Characteristics Study of LTCC Microchannels Served to Power Amplifier Chip Modules[D]. Chengdu: University of Electronic Science and Technology of China, 2017. (in Chinese)
132
SCOTTM. SAMPSON MFR active phased array antenna[C]//IEEE International Symposium on Phased Array Systems and Technology. Boston: IEEE, 2003: 119-123.
133
KAWASAKIH, NODAH, YABET, et al. Characteristics of reservoir embedded loop heat pipe in deployable radiator on ETS-VIII at beginning of the experiment under orbital environment[C]//40th Thermophysics Conference. Reston: AIAA, 2008: 119-123.
134
祝薇, 陈新, 祝志祥, 等. 基于热电效应的新型制冷器件研究[J]. 智能电网, 2015, 3(9): 823-828.
ZHUW, CHENX, ZHUZ X, et al. Research on new type refrigeration device based on thermoelectric effect[J]. Smart Grid, 2015, 3(9): 823-828. (in Chinese)
135
于惠. 基于微通道结构的间接液冷散热技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
YUH. Research on the Indirect Liquid Cooling Technique Based on Microchannels[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
136
王从思, 宋正梅, 康明魁, 等. 微通道冷板在有源相控阵天线上的应用[J]. 电子机械工程, 2013, 29(1): 1-4, 13.
WANGC S, SONGZ M, KANGM K, et al. Application of micro-channel cold plate to active phased array antenna[J]. Electro-Mechanical Engineering, 2013, 29(1): 1-4, 13. (in Chinese)
137
卢婷. 相控阵天线微小流道热流特性等效建模方法研究与热设计[D]. 成都: 电子科技大学, 2017.
LUT. Research on Equivalent Modeling Method of Heat Flow Characteristics of Microchannel of Phased Array Antenna and Thermal Design[D]. Chengdu: University of Electronic Science and Technology of China, 2017. (in Chinese)
138
MATINK, BAR-COHENA, MAURERJ J. Modeling and simulation challenges in embedded two phase cooling: DARPA's ICECool program[C]//ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems Collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels. San Francisco: ASME, 2015: V003T10A024.
139
VANERP R, SOLEIMANZADEHR, NELAL, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585(7824): 211-216.
140
张彬. 基于机电热耦合的星载有源相控阵天线热设计方法[D]. 西安: 西安电子科技大学, 2020.
ZHANGB. Thermal Design of Spaceborne Active Phased Array Antenna Based Structural-Electromagnetic-Thermal Coupling[D]. Xi'an: Xidian University, 2020. (in Chinese)
141
张金平,李建新. 星载雷达有源相控阵天线轻量化技术[C]//2009年全国天线年会论文集. 北京: 电子工业出版社, 2009: 709-713.
ZHANGJ P, LIJ X. Light-weighting technologies for the active phased array of spaceborne radar[C]//Proceedings of the China Antenna Annual Conference. Beijing: Publishing House of Electronics Industry, 2009: 709-713. (in Chinese)
142
徐明明, 刘嘉山, 蔺祥宇, 等. 薄膜有源相控阵天线的设计与实现[C]//2017年全国天线年会论文集(上册). 北京: 电子工业出版社, 2017: 580-582.
XUM M, LIUJ S, LINX Y, et al. Design and fabrication of membrane active phased-array antennas[C]//Proceedings of the China Antenna Annual Conference(Volume 1). Beijing: Publishing House of Electronics Industry, 2017: 580-582. (in Chinese)
143
HUANGJ. The development of inflatable array antennas[J]. IEEE Antennas & Propagation Magazine, 2001, 43(4): 44-50.
144
HAUHEM S, WOOLDRIDGEJ J. High density packaging of X-band active array modules[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, 1997, 20(3): 279-291.
145
王新宽, 蒋媛, 熊召新. 基于时间调制的稀疏直线阵方向图综合[J]. 陕西理工大学学报(自然科学版), 2018, 34(6): 51-58.
WANGX K, JIANGY, XIONGZ X. Pattern synthesis of thinned linear arrays based on time modulated technique[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 2018, 34(6): 51-58. (in Chinese)
146
任刚强. 杂波环境中稀疏MIMO雷达宽带DOA估计[D]. 成都: 电子科技大学, 2020.
RENG Q. Wideband DOA Estimation Under Clutter Using MIMO Radar with Sparse Array[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)
147
唐思晴. 结合场景需求的雷达阵列与方向图优化设计[D]. 成都: 电子科技大学, 2020.
TANGS Q. Radar Array and Pattern Optimization Design Based on Scene Requirements[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)
148
KHANA A, BROWNA K. Null steering in irregularly spaced sparse antenna arrays using aperture distributed subarrays and hybrid optimiser[J]. IET Microwaves, Antennas & Propagation, 2014, 8(2): 86-92.
149
杨志伟, 贺顺, 廖桂生, 等. 机翼共形阵列的阵元位置估计方法[J]. 电子学报, 2013, 41(10): 1969-1974.
YANGZ W, HES, LIAOG S, et al. Sensor position estimation for wing conformal antenna array[J]. Acta Electronica Sinica, 2013, 41(10): 1969-1974. (in Chinese)
150
OLIVERIG, MASSAA. Genetic algorithm(GA)-enhanced almost difference set(ADS)-based approach for array thinning[J]. IET Microwaves, Antennas & Propagation, 2011, 5(3): 305-315.
151
李龙军, 王布宏, 夏春和. 稀疏共形阵列天线方向图综合[J]. 电子学报, 2017, 45(1): 104-111.
LIL J, WANGB H, XIAC H. Synthesis of sparse conformal array antennas pattern[J]. Acta Electronica Sinica, 2017, 45(1): 104-111. (in Chinese)
152
LEEE T, EUNH C. Optimal sensor placement in reduced-order models using modal constraint conditions[J]. Sensors, 2022, 22(2): 589.
153
HEC, XINGJ C, LIJ L, et al. A combined optimal sensor placement strategy for the structural health monitoring of bridge structures[J]. International Journal of Distributed Sensor Networks, 2013, 9(11): 820694.
154
YIT H, LIH N. Methodology developments in sensor placement for health monitoring of civil infrastructures[J]. International Journal of Distributed Sensor Networks, 2012, 8(8): 612726.
155
LIB B, DER KIUREGHIANA. Robust optimal sensor placement for operational modal analysis based on maximum expected utility[J]. Mechanical Systems and Signal Processing, 2016, 75: 155-175.
156
CASTRO-TRIGUEROR, SAAVEDRA FLORESE I, DIAZDELAOF A, et al. Optimal sensor placement in timber structures by means of a multi-scale approach with material uncertainty[J]. Structural Control and Health Monitoring, 2014, 21(12): 1437-1452.
157
VINCENZIL, SIMONINIL. Influence of model errors in optimal sensor placement[J]. Journal of Sound and Vibration, 2017, 389: 119-133.
158
KIMT, YOUNB D, OH H. Development of a stochastic effective independence(SEFI) method for optimal sensor placement under uncertainty[J]. Mechanical Systems and Signal Processing, 2018, 111: 615-627.
159
PAPADIMITRIOUC, LOMBAERTG. The effect of prediction error correlation on optimal sensor placement in structural dynamics[J]. Mechanical Systems and Signal Processing, 2012, 28: 105-127.
160
YANGC, LIANGK, ZHANGX P. Strategy for sensor number determination and placement optimization with incomplete information based on interval possibility model and clustering avoidance distribution index[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366: 113042.
161
WANGH S C. Performance of phased-array antennas with mechanical errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 535-545.
162
ZHOUJ Z, KANGL, TANGB F, et al. Adaptive compensation of flexible skin antenna with embedded fiber Bragg grating[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(7): 4385-4396.
163
袁慎芳, 闫美佳, 张巾巾, 等. 一种适用于梁式机翼的变形重构方法[J]. 南京航空航天大学学报, 2014, 46(6): 825-830.
YUANS F, YANM J, ZHANGJ J, et al. Shape reconstruction method of spar wing structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(6): 825-830. (in Chinese)
164
ALIOLIM, MASARATIP, MORANDINIM, et al. Membrane shape and load reconstruction from measurements using inverse finite element analysis[J]. AIAA Journal, 2016, 55(1): 297-308.
165
BRUNOR, TOOMARIANN, SALAMAM. Shape estimation from incomplete measurements: A neural-net approach[J]. Smart Materials and Structures, 1994, 3(2): 92-97.
166
李飞. 有源相控阵天线结构响应重构方法研究[D]. 西安: 西安电子科技大学, 2018.
LIF. Research on Structural Response Reconstruction Method of Active Phased Array Antenna[D]. Xi'an: Xidian University, 2018. (in Chinese)
167
翟孟云, 严育林. 阵列天线理论导引[M]. 北京:国防工业出版社, 1980.
ZHAIM Y, YANY L. Array Antenna Theory Guide[M]. Beijing: National Defense Industry Press, 1980. (in Chinese)
168
张祖伦. 相控阵雷达中相位误差分析及补偿方法[J]. 雷达科学与技术, 2010, 8(2): 95-100.
ZHANGZ L. Phase error analysis and compensation in airborne phased-array radar[J]. Radar Science and Technology, 2010, 8(2): 95-100. (in Chinese)
169
王从思, 毛静, 周金柱, 等. 面向数字器件量化的变形有源相控阵天线幅相补偿量确定方法: CN106991211A[P]. 2017-07-28.
WANGC S, MAOJ, ZHOUJ Z, et al. A Method for Determining Amplitude and Phase Compensation Quantities for Deformed Active Phased Array Antennas for Digital Device Quantification: CN106991211A[P]. 2017-07-28. (in Chinese).
170
周云宵. 面向机电耦合的有源相控阵天线电性能计算、补偿和集成设计软件[D]. 西安: 西安电子科技大学, 2018.
ZHOUY X. Software of Electrical Performance Calculation, Compensation and Integrated Design of Active Phased Array Antenna Orientated Structural-Electromagnetic Coupling[D]. Xi'an: Xidian University, 2018. (in Chinese)
171
杨东萍, 未连保, 衣尚军. 相位误差对相控阵天线影响分析与改进[J]. 无线电工程, 2013, 43(3): 24-26.
YANGD P, WEIL B, YIS J. Analysis and improvement of phase error effect on phase array antenna[J]. Radio Engineering, 2013, 43(3): 24-26. (in Chinese)
172
AGRAWALA K, HOLZMANE L. Active phased array design for high reliability[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1204-1211.
173
SINGH GREWALN, RATTANM, SINGH PATTERHM. A linear antenna array failure correction using improved bat algorithm[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2017, 27(7): e21119.
174
KHANS U, QURESHII M, SHOAIBB, et al. Correction of faulty pattern using cuckoo search algorithm and symmetrical element failure technique along with distance adjustment between the antenna array[C]//2015 12th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Islamabad: IEEE, 2015: 633-636.
175
牛传峰, 吴旭, 赵东贺. 相控阵天线阵元失效的影响分析及补偿[J]. 无线电通信技术, 2013, 39(5): 44-46, 77.
NIUC F, WUX, ZHAOD H. Influence of failed elements on phased array antenna and its compensation[J]. Radio Communications Technology, 2013, 39(5): 44-46, 77. (in Chinese)
176
潘超, 张任, 李瑞. 阵元失效对相控阵天线低副瓣的影响分析[J]. 舰船电子工程, 2016, 36(4): 83-85, 103.
PANC, ZHANGR, LIR. Effects of element failure on side-lobe level of phased array antenna[J]. Ship Electronic Engineering, 2016, 36(4): 83-85, 103. (in Chinese)
177
汪一心, 朱桓, 徐晓文, 等. 阵列有源天线单元失效的影响与补偿[J]. 现代雷达, 1998, 20(4): 58-62.
WANGY X, ZHUH, XUX W, et al. Influence of failed elements on active array antenna and its compensation[J]. Modern Radar, 1998, 20(4): 58-62. (in Chinese)
178
李建新, 高铁. 固态有源相控阵天线中的单元失效与容差分析[J]. 现代雷达, 1992, 14(6): 37-44.
LIJ X, GAOT. Analysis of element failure and tolerance in solid-state active phased array[J]. Modern Radar, 1992, 14(6): 37-44. (in Chinese)
179
胡乃岗, 保宏, 连培园, 等. 大型相控阵天线结构与调整机构一体化设计[J]. 机械工程学报, 2015, 51(1): 196-202.
HUN G, BAOH, LIANP Y, et al. Synthetic design of structure and adjustment mechanism of large phased array antennas[J]. Journal of Mechanical Engineering, 2015, 51(1): 196-202. (in Chinese)
180
SONS H, YUNJ S, PARKU H, et al. Theoretical analysis for beam pointing accuracy of stair-planar phased array antenna with tracking beam[C]//IEEE Antennas and Propagation Society International Symposium. Columbus: IEEE, 2003: 204-207.
181
SONGG, KELLYB, AGRAWALB N. Active position control of a shape memory alloy wire actuated composite beam[J]. Smart Materials and Structures, 2000, 9(5): 711-716.
182
MAILLOUXR J. 相控阵天线手册[M]. 北京: 电子工业出版社, 2007.
183
TAKANOT, HOSONOH, SAEGUSAK, et al. Proposal of a multiple folding phased array antenna and phase compensation for panel steps[C]//2011 IEEE International Symposium on Antennas and Propagation. Spokane: IEEE, 2011: 1557-1559.
184
SONS H, EOMS Y, JEONS I, et al. Automatic phase correction of phased array antennas by a genetic algorithm[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2751-2754.
185
STEYSKALM, MAILLOUXR J. Generalization of a phased array error correction method[C]//IEEE Antennas and Propagation Society International Symposium. Baltimore: IEEE, 1996: 506-509.
186
LESUEURG, CAERD, MERLETT, et al. Active compensation techniques for deformable phased array antenna[C]//2009 3rd European Conference on Antennas and Propagation. Berlin: IEEE, 2009: 1578-1581.
187
SCHIPPERSH, VAN TONGERENJ H, KNOTTP, et al. Vibrating antennas and compensation techniques Research in NATO/RTO/SET 087/RTG 50[C]//2007 IEEE Aerospace Conference. Big Sky: IEEE, 2007: 1-13.
188
QINY J, HEJ G. Analysis of tangent oval radome based on Matlab[C]//2005 Asia-Pacific Microwave Conference Proceedings. Suzhou: IEEE, 2005. DOI:10.1109/APMC.2005.1607107.
189
程传兵, 王重海, 王洪升, 等. 陶瓷天线罩无机涂层的研究进展[J]. 硅酸盐通报, 2012, 31(5): 1161-1164, 1169.
CHENGC B, WANGC H, WANGH S, et al. Research progress of ceramic radome inorganic coating[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1161-1164, 1169. (in Chinese)
190
ROCKJ C, MULLINSJ H, BOOTHJ P, et al. The past, present, and future of electronically-steerable phased arrays in defense applications[C]//2008 IEEE Aerospace Conference. Big Sky: IEEE, 2008: 1-7.
191
JINX C, FANX L, LUC S, et al. Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites[J]. Journal of the European Ceramic Society, 2018, 38(1): 1-28.
192
TANGS F, HUC L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review[J]. Journal of Materials Science & Technology, 2017, 33(2): 117-130.
193
CHERUKATTU GOPINATHAPANICKERJ, INAMDARA, ANANDA, et al. Radar transparent, impact-resistant, and high-temperature capable radome composites using polyetherimide-toughened cyanate ester resins for high-speed aircrafts through resin film infusion[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7502-7511.
194
XUW Y, DUANB Y, LIP, et al. Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(11): 5880-5885.
195
YUES, LIX, QIX B, et al. Design of double-layer transmission structure of radome[C]//2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference(CSQRWC). Taiyuan: IEEE, 2019: 1-3.
196
HUANGF S, CHENM, WANGK. Research on optimization of radome based on phased array radar-seeker[C]//International Conference on Artificial Intelligence for Communications and Networks. Xining: Springer, 2021: 423-432.
197
ZHOUP Y, ZHANGZ, HEM. Radiation pattern recovery of the impaired-radome-enclosed antenna array[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(9): 1639-1643.
198
WANGC S, WANGY, CHENY K, et al. Coupling model and electronic compensation of antenna-radome system for hypersonic vehicle with effect of high-temperature ablation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2340-2355.
199
APPANNAGARRIN, BARDII, EDLINGERR, et al. Modeling phased array antennas in Ansoft HFSS[C]//Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology(Cat. No.00TH8510). Dana Point: IEEE, 2000: 323-326.
200
RÜTSCHLIN, WITTIGT. State of the art antenna simulation with CST STUDIO SUITE[C]//2015 9th European Conference on Antennas and Propagation(EuCAP). Lisbon: IEEE, 2015: 1-5.
201
WEIC N, WUK L. Array-antenna decoupling surfaces for quasi-yagi antenna arrays[C]//2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego: IEEE, 2017: 2103-2104.
202
BLAIRC, LÓPEZ RUIZS, MORALESM. 5G, A MultiPhysics simulation vision from antenna element design to systems link analysis[C]//2019 International Conference on Electromagnetics in Advanced Applications(ICEAA). Granada: IEEE, 2019: 1420-1422.
203
KEDARA, BISHTA S, SREENIVASULUK, et al. GaN based wide band C-band active phased array antenna design with wide scan volume[C]//2020 IEEE International Radar Conference. Washington: IEEE, 2020: 88-93.
204
LUOY, LIUK, GAOQ, et al. Research on conformal phased array T/R module based on LCP substrate[C]//2021 22nd International Conference on Electronic Packaging Technology(ICEPT). Xiamen: IEEE, 2021: 1-5.
205
陈金虎. 基于机电耦合的车载有源相控阵雷达服役载荷结构分析与优化设计[D]. 西安: 西安电子科技大学, 2020.
CHENJ H. Structural Analysis and Optimization Design of In-Service Load of Vehicle-Mounted Active Phased Array Radar Based on electromechanical Coupling[D]. Xi'an: Xidian University, 2020. (in Chinese)
206
GALWAYL, MCCULLAGHP, LIGHTBODYG, et al. The potential of the brain-computer interface for learning: A technology review[C]//2015 IEEE International Conference on Computer and Information Technology;Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. Liverpool: IEEE, 2015: 1554-1559.
207
FRANTZR Z, CORCHUELOR, ROOS-FRANTZF. On the design of a maintainable software development kit to implement integration solutions[J]. Journal of Systems and Software, 2016, 111: 89-104.
208
GROUTV, AKINSOLUM O, LIUB, et al. Software solutions for antenna design exploration: A comparison of packages, tools, techniques, and algorithms for various design challenges[J]. IEEE Antennas and Propagation Magazine, 2019, 61(3): 48-59.
209
SILVAY N, ALMEIDAI, QUEIROZM. SQL: From traditional databases to big data[C]//Proceedings of the 47th ACM Technical Symposium on Computing Science Education. New York: ACM, 2016: 413-418.
210
WANGC S, YUANS, GAOW, et al. A Taylor-surrogate-model-based method for the electrical performance of array antennas under interval position errors[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1221-1225.
211
DANYLOVA A, GOYETTET M, WALDMANJ, et al. Terahertz inverse synthetic aperture radar(ISAR) imaging with a quantum cascade laser transmitter[J]. Optics Express, 2010, 18(15): 16264-16272.
212
KAPILEVICHB, PINHASIY, ARUSIR, et al. 330 GHz FMCW image sensor for homeland security applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31(11): 1370-1381.
213
BISWASD, SELVANAYAKIK, PATELN, et al. An airborne antenna system for broadside coverage with varying roll and pitch angles[C]//2007 IEEE Applied Electromagnetics Conference. Kolkata: IEEE, 2007: 1-4.
214
URCIAM, BANKSD. Structurally integrated phased arrays[C]//2011 Aerospace Conference. Big Sky: IEEE, 2011: 1-8.
215
BAEKS M, KOM G, KIMM S, et al. Structural design of conformal load-bearing array antenna structure(CLAAS)[J]. Advanced Composite Materials, 2017, 26(sup1): 29-42.
216
JAVIDB, HEYDARIP. Design and implementation of a CMOS 4-bit 12-GS/s data acquisition system-on-chip[J]. IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 2014, 22(10): 2164-2175.
217
IMTIAZS A, JIANGZ, RODRIGUEZ-VILLEGASE. An ultralow power system on chip for automatic sleep staging[J]. IEEE Journal of Solid-State Circuits, 2017, 52(3): 822-833.
218
CAOC H, DINGY P, YANGX G, et al. A 24-GHz transmitter with on-chip dipole antenna in 0.13-μm CMOS[J]. IEEE Journal of Solid-State Circuits, 2008, 43(6): 1394-1402.

Funding

National Natural Science Foundation of China(51975447)
National Defense Basic Scientific Research Program of China(JCKY2021210B007)
Funded by Natural Science Basic Research Program of Shaanxi Province(2022JQ329)
New Teacher Innovation Program of Xidian University(XJS220402)
PDF(4382 KB)

Accesses

Citation

Detail

Sections
Recommended

/