The Analysis of Continuous Particle Swarm Optimization Algorithm's Mean Square Convergence

LUO Jin-yan

ACTA ELECTRONICA SINICA ›› 2012, Vol. 40 ›› Issue (7) : 1364-1367.

PDF(592 KB)
CIE Homepage  |  Join CIE  |  Login CIE  |  中文 
PDF(592 KB)
ACTA ELECTRONICA SINICA ›› 2012, Vol. 40 ›› Issue (7) : 1364-1367. DOI: 10.3969/j.issn.0372-2112.2012.07.013

The Analysis of Continuous Particle Swarm Optimization Algorithm's Mean Square Convergence

  • LUO Jin-yan
Author information +

Abstract

Particle swarm optimization (PSO) algorithm is a population-based,self-adaptive search optimization method motivated by the observation of simplified animal social behaviors.Most of the analysis of PSO algorithm is in the deterministic assumptions.Based on the theory of stochastic process,this paper studies the mean square convergence of the particle swarm optimization algorithm.Simulations demonstrate the validity of the proposed method.

Key words

moment equations / stochastic process / particle swarm optimization / mean square convergence

Cite this article

Download Citations
LUO Jin-yan. The Analysis of Continuous Particle Swarm Optimization Algorithm's Mean Square Convergence[J]. Acta Electronica Sinica, 2012, 40(7): 1364-1367. https://doi.org/10.3969/j.issn.0372-2112.2012.07.013

References

[1] 彭喜元,彭宇,戴毓丰,等.群智能理论及其应用[J].电子学报,2003,31(12A):1982-1988. PENG Xi-yuan,PENG Yu,DAI Yu-feng.Swarm intelligence theory and applications.Acta Electronica Sinica,2003,31(12A):1982-1988.(in Chinese)

[2] Kennedy J,Eberhart RC.Particle swarm optimization.Proceedings of IEEE International Conference on Neural Networks.Perth,Australia,1995.1942-1948.

[3] Shi YH,Eberhart RC.A modified particle swarm optimizer.Proceedings of the IEEE International Conference on Evolutionary Computation.Piscataway,NJ,Anchorage,AK USA:IEEE service center,1998.69-73.

[4] Poli R,Kennedy J,Blackwell T.Particle swarm optimization[J].Swarm Intelligence,2007,(1):33-57.

[5] Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary computation,2002,6(1):58-73.

[6] Trelea I C.The particle swarm optimization algorithm:Convergence analysis and parameter Selection[J].Information Processing Letters,2003,85(6):317-325.

[7] Emara H M,Fattah A H A.Continuous swarm optimization technique with stability analysis.Proceedings of American Control Conference.Cairo,Egypt,2004.2811-2817.

[8] Fernández-Martínez J L,García-Gonzalo E,Fernández-Alvarez J P.Theoretical analysis of particle swarm trajectories through a mechanical analogy[J].International Journal of Computational Intelligence Research,2008,4(2):93-104.

[9] Kadirkamanathan V,Selvarajah K,Fleming P.Stability analysis of the Particle dynamics in particle swarm[J].IEEE Transactions on Evolutionary Computation,2006,10(3):245-255.

[10] 金欣磊,马龙华,吴铁军,等.基于随机过程的PSO收敛性分析[J].自动化学报,2007,33(12):1263-1268. Jin X L,Ma L H,Wu T J,et al.Convergence analysis of the particle swarm optimization based on stochastic processes[J].Acta Automatica Sinica,2007,33(12):1263-1268.(in Chinese)

[11] Van der Bergh F,Engelbrecht A P.A study of particle swarm optimization particle trajectories[J].Information Sciences,2006,176(8):937-971.

[12] Pederson M E.Good Parameters for Particle Swarm Optimization.Hvass aboratories,Technical Report HL1001.http://www.hvass-labs.org/people/magnus/publications/pedersen10good-pso.pdf.2010.

[13] Mikki S M,Kishk A A.Physical theory for particle swarm optimization[J].Progress in Electromagnetics research,2007,75:171-207.

[14] Soong T T.Random Differential Tail Equations in Science and Engineering[M].New York and London:Academic Press,1973.

[15] Collins J D,Thomson W T.The eigen value problem for structural systems with statistical properties[J].AIAA Journal,1969,7(4):642-648.

Funding

National Natural Science Foundation of Fujian Province,  China (No.2009J05011); Science and Technology Research Program of Minjiang University (No.YKQ09001)
PDF(592 KB)

Accesses

Citation

Detail

Sections
Recommended

/