Robustness of the Reverse Triple I Algorithms Based on Schweizer-Sklar T-norms

LUO Min-xia, WANG Ya-ping

ACTA ELECTRONICA SINICA ›› 2016, Vol. 44 ›› Issue (4) : 959-966.

PDF(835 KB)
CIE Homepage  |  Join CIE  |  Login CIE  |  中文 
PDF(835 KB)
ACTA ELECTRONICA SINICA ›› 2016, Vol. 44 ›› Issue (4) : 959-966. DOI: 10.3969/j.issn.0372-2112.2016.04.029

Robustness of the Reverse Triple I Algorithms Based on Schweizer-Sklar T-norms

  • LUO Min-xia, WANG Ya-ping
Author information +

Abstract

Since the family of Schweizer-Sklar t-norm is flexible,they have good characteristics for fuzzy reasoning based on these flexible operators.In this paper,the properties of the Schweizer-Sklar operators family and the robustness of fuzzy reasoning algorithms are studied.The family of Schweizer-Sklar t-norms are decreasing for the variable m.The family of Schweizer-Sklar t-conorms are increasing for the variable m.These perturbations of Schweizer-Sklar t-conorms,Schweizer-Sklar t-norms and its residual implications are given.We proved that Schweizer-Sklar residual implication operators (include Lukasiewizc implication operator) are more suitable in fuzzy reasoning for m∈(0,∞).Moreover,we showed that the FMP reverse triple I algorithms based on the Schweizer-Sklar residual implications are robust for m∈(0,∞),and the FMT reverse triple I algorithms based on the Schweizer-Sklar residual implications are robust for m∈(0,∞).

Key words

Schweizer-Sklar t-norms / reverse triple I algorithms / Minkowski distance / robustness

Cite this article

Download Citations
LUO Min-xia, WANG Ya-ping. Robustness of the Reverse Triple I Algorithms Based on Schweizer-Sklar T-norms[J]. Acta Electronica Sinica, 2016, 44(4): 959-966. https://doi.org/10.3969/j.issn.0372-2112.2016.04.029

References

[1] Zadeh L A.Fuzzy sets[J].Information and Control,1965,8(3):338-353.
[2] 陈卫东,朱奇光.基于模糊算法的移动机器人路径规划[J].电子学报,2011,39 (4):971-974. CHEN Wei-dong,ZHU Qi-guang.Mobile robot path planning based on fuzzy algorithms[J].Acta Electronica Sinica,2011,39 (4):971-974.(in Chinese)
[3] 袁学海,李洪兴,杨雪.基于模糊变换的模糊系统和模糊推理建模法[J].电子学报,2013 ,41(4):674-680. YUAN Xue-hai,LI Hong-xing,YANG Xue.Fuzzy system and fuzzy inference modeling method based on fuzzy transformation[J].Acta Electronica Sinica,2013,41(4):674-680.(in Chinese)
[4] 罗敏霞,姚宁.L*系统中公式的语构程度化方法[J].电子学报,2011,39(2):424-428. LUO Min-xia,YAO Ning.Syntactic graded method of formulas in the system L*[J].Acta Electronica Sinica,2011,39(2):424-428.(in Chinese)
[5] 王国俊.模糊推理的全蕴涵三I算法[J].中国科学(E辑),1999,29(1) :43-53.
[6] Zadeh L A.Outline of a new approach to the analysis of complex systems and decision processes[J].IEEE Transactions on Systems,Man,and Cybernetics,1973,3(1):28-44.
[7] Pei D W.Unified full implication algorithms of fuzzy reasoning[J].Information Sciences,2008,178(2):520-530.
[8] Pei D W.Formalization of implication based fuzzy reasoning method[J].International Journal of Approximate Reasoning,2012,53(5):837-846.
[9] Luo M X,Yao N.Triple I algorithms based on Schweizer-sklar operators in fuzzy reasoning[J].International Journal of Approximate Reasoning,2013,54(5):640-652.
[10] 宋士吉,吴澄.模糊推理的反向三I算法[J].中国科学(E辑),2002,32 (2) :230-246.
[11] 罗敏霞,桑倪.基于Schweizer-Sklar三角范数簇诱导的剩余蕴涵簇的反向三I算法[J].智能系统学报,2012,7(6):494-499. LUO Minxia,SANG Ni.The reverse triple I algorithms based on a class of residual implications induced by the family of Schweizer-Sklar t-norms[J].CAAI Transactions on Intelligent Systems,2012,7(6):494-499.(in Chinese)
[12] 陈明,陈武凡,冯前进,杨丰.基于互信息量和模糊梯度相似性的医学图像配准[J].电子学报,2003,31 (12):1835-1838. CHEN Ming,CHEN Wu-fan,FENG Qian-jin,YANG Feng.Medical image registration based on mutual information and fuzzy gradient similarity[J].Acta Electronica Sinica,2003,31 (12):1835-1838.(in Chinese)
[13] Dai S S,Pei D W,Guo D H.Robustness analysis of full implication inference method[J].Approximate Reasoning,2013,54(5):653-666.
[14] Li Y F,Qin K Y,He X X.Robustness of fuzzy connectives and fuzzy reasoning[J].Fuzzy Sets and Systems,2013,225(8):93-105.
[15] Wang G J,Duan J Y.On robustness of the full implication triple I inference method with respect to finer measurements[J].Approximate Reasoning,2014,55(3):787-796.
[16] Hung W L,Yang M S.Similarity measures of intuitionistic fuzzy sets based on LP metric[J].International Journal of Approximate Reasoning,2007,46(1):120-136.
[17] Dai S S,Pei D W,Wang S M.Perturbation of fuzzy sets and fuzzy reasoning based on normalized Minkowski distance[J].Fuzzy Sets and Systems,2012,189(1):63-73.
[18] Klement E P,Mesiar R,Pap E.Triangular Norms[M].Dordrecht:Kluwer Academic,2000.
[19] Whalen T.Parameterized R-implications[J].Fuzzy Sets and Systems,2003,134(2):231-281.
[20] He H C,Wang H,Liu Y H.Principle of Universal Logics[M].Beijing:Science Press,2006.
[21] Hardy G H,Littlewood J E,Polya G.Inequalities(2nd edition)[M].Cambrige:Cambridge University Press,1952.
[22] 徐蔚鸿,谢中科,杨静宇,叶有培.两类模糊推理算法的连续性和逼近性[J].软件学报,2004,15(10):1485-1492. XU Wei-Hong,XIE Zhong-Ke,YANG Jing-Yu,YE You-Pei.Continuity and approximation properties of two classes of algorithms for fuzzy inference[J].Journal of Software,2004,15(10):1485-1492.(in Chinese)
[23] 罗敏霞,何华灿.泛逻辑学语构理论[M].北京:科学出版社,2010.
[24] Wang X Z,Ruan D,Kerre E E.Mathematics of Fuzziness—Basic Issues[C].Heidelberg:Springer,2009.

Funding

National Natural Science Foundation of China (No.61273018)
PDF(835 KB)

1066

Accesses

0

Citation

Detail

Sections
Recommended

/