
A Collaborative Recommendation Algorithm Based on Heuristic Clustering Model and Category Similarity
WANG Xing-mao, ZHANG Xing-ming, WU Yi-tao, PAN Jun-chi
ACTA ELECTRONICA SINICA ›› 2016, Vol. 44 ›› Issue (7) : 1708-1713.
A Collaborative Recommendation Algorithm Based on Heuristic Clustering Model and Category Similarity
The collaborative recommendation algorithm based on kNN confirms the number of neighbours subjectively,and is not accurate enough to predict by kNN mean weighting calculating.To address these two problems,the maximum and minimum distance clustering algorithm was introduced and improved to design the heuristic clustering model,the model divided the users allodially without the determination of the category numbers,the neighbours of the target users were the users who were in the same category with the target users;then the category similarity was defined to build the category relation between the unscore and score items of the target user in prediction,and the kNN mean weighting calculating was advanced based on the category similarity.The experiments show that this algorithm improves the degree of accuracy (reducing about 0.035 MAE).
collaborative / recommendation algorithm / clustering algorithm / heuristic clustering model / category similarity {{custom_keyword}} /
[1] 张锋,等.两方参与的隐私保护协同过滤推荐研究[J].电子学报,2009,37(1):84-89. Zhang Feng,et al.Research on privacy-preserving tw o-party collaborative filtering recommendation[J].Acta Electronica Sinica,2009,37(1):84-89.(in Chinese)
[2] 黄世平,黄晋,陈健,等.自动建立信任的防攻击推荐算法研究[J].电子学报,2013,41(2):84-89. Huang Shi-ping,Huang Jin,Chen Jian,et al.Anti-attack recommender algorithm bas ed on automatic trust establishment[J].Acta Electronica Sinica,2013,41(2):84-89.(in Chinese)
[3] 吴永辉,等.基于主题的自适应、在线网络热点发现方法及新闻推荐系统[J].电子学报,2010,38(11):2620-2624. Wu Yong-hui,et al.Adaptive on-line web topic detection method for web news recommendation system[J].Acta Electronica Sinica,2010,38(11):2620-2624.(in Chinese)
[4] 韩立新.对搜索引擎中评分方法的研究[J].电子学报,2005,33(11):2094-2096. Han Li-xin.A study on the ranking method of search engines[J].Acta Electronic a Sinica,2005,33(11):2094-2096.(in Chinese)
[5] Song Y,Zhang L,et al.Automatic tag recommendation algorithm for social recomme nder systems[J].ACM Transactions on the Web,2011,5(1):4-39.
[6] 李聪.电子商务协同过滤可扩展性研究综述[J].现代图书情报技术,2010,(11):37-44. Li Cong.Review of scalability problem in ecommerce collaborative filtering[J]. Modern Library and Information Technology,2010,(11):37-44.(in Chinese)
[7] Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:A sur vey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
[8] Truong K,Ishikawa F,Honiden S.Improving accuracy of recommender system by item clustering[J].IEICE-Trans Inf Syst,2007,E90-D(9):1363-1373.
[9] 张莉,秦桃,滕丕强.一种改进的基于用户聚类的协同过滤算法[J].情报科学,2014,32(10):24-28. Zhang Li,Qin Tao,Teng Pi-qiang.An improved collabrative filtering algorithm bas ed on user clustering[J].Information Science,2014,32(10):24-28.(in Chinese)
[10] Rashid A M,Lam S K,et al.ClustKNN:A highly scalable hybrid model & memory-based CF algorithm[A].Proceedings of the KDD Workshop on Web Mining and Web Usage A nalysis[C].Philadelphia,Pennsylvania:ACM,2006.1-59593-444-8.
[11] George T,Merugu S.A scalable collaborative filtering framework based on co-clus tering[A].Proceedings of the Fifth IEEE International Conference on Data Mining[C].Washington DC:IEEE Computer Society,2005.625-628.
[12] 李弼程,邵美珍,黄杰.模式识别原理与应用[M].西安电子科技大学出版社,2008.2. Li Bi-cheng,Shao Mei-zhen,Huang Jie.Principle and Application of Pattern Recog nition[M].Xidian University Publisher,2008.2.(in Chinese)
[13] Haralambos,Marmanis,Dmitry.智能Web算法[M].电子工业出版社,2011.7.
[14] KRZYWICKI A,WOBCKE W,CAI X.Interaction-based collaborative filtering methods for recommendation in online dating[A].Web Information Systems Engineering-WISE 2010[C].Berlin Heidelberg:Springer,2010.342-356.
[15] ZHANG J Y,PEARL P.A recursive prediction algorithm for collaborative filtering recommender systems[A].Proceedings of the 2007 ACM Conference on Recommender Systems[C].ACM,2007.57-64.
/
〈 |
|
〉 |