
Classification of Microarray Data Using Evolutionary Hypernetworks with Subspace Fusion
WANG Jin, LIU Bin, ZHANG Jun, CHEN Qiao-song, DENG Xin
ACTA ELECTRONICA SINICA ›› 2016, Vol. 44 ›› Issue (10) : 2308-2313.
Classification of Microarray Data Using Evolutionary Hypernetworks with Subspace Fusion
In order to solve the over-fitting problem of the traditional pattern recognition approaches under the DNA microarray data with small train samples,a subspace fusion-based evolutionary hypernetwork model is proposed in this paper.With the methods of subspace division,hyperedge coverage,and subspace fusion,the proposed scheme reduces the dependence on the initialization,decreases the fitting error of the data space,and enhances the generalization ability of the evolutionary hypernetwork.The experimental results on four DNA microarray datasets show that the proposed model achieves higher classification accuracy and stronger generalization ability than other compared traditional pattern recognition method.
pattern recognition / microarray data classification / evolutionary hypernetwork / subspace / over-fitting {{custom_keyword}} /
[1] Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
[2] Alon U,Barkai N,Notterman D,et al.Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J].Proceedings of the National Academy of Sciences,1999,96(12):6745-6750.
[3] Reunanen J.Overfitting in making comparisons between variable selection methods[J].Journal of Machine Learning Research,2003,3:1371-1382.
[4] Cho S B,Won H.Cancer classification using ensemble of neural networks with multiple significant gene subsets[J].Applied Intelligence,2007,26(3):243-250.
[5] Mundra P A,Rajapakse J C.SVM-RFE with MRMR filter for gene selection[J].IEEE Transactions on Nanobioscience,2010,9(1):31-37.
[6] Prasartvit T,Banharnsakun A,Kaewkamnerdpong B,et al.Reducing bioinformatics data dimension with ABC-kNN[J].Neurocomputing,2013,116:367-381.
[7] Tan A C,Gilbert D.Ensemble machine learning on gene expression data for cancer classification[J].Applied Bioinformatics,2003,2(3 suppl):75-83.
[8] Zhang B T.Hypernetworks:a molecular evolutionary architecture for cognitive learning and memory[J].IEEE Computational Intelligence Magazine,2008,3(3):49-63.
[9] Kim S J,Ha J W,Zhang B T.Bayesian evolutionary hypergraph learning for predicting cancer clinical outcomes[J].Journal of Biomedical Informatics,2014,49(6):101-111.
[10] Park C H,Kim S J,Kim S,et al.Use of evolutionary hypernetworks for mining prostate cancer data[A].Proceedings of the 8th International Symposium on Advanced Intelligent Systems[C].Springer,2007.702-706.
[11] 王进,张军,胡白帆.结合最优类别信息离散的细粒度超网络微阵列数据分类[J].上海交通大学学报,2013,47(12):1856-1862. Wang Jin,Zhang Jun,Hu Bai-fan.Optimal class-dependent discretization-based fine-grain hypernetworks for classification of microarray data[J].Journal of Shanghai Jiaotong University,2013,47(12):1856-1862.(in Chinese)
[12] Wang J,Huang P L,Sun K W,et al.Ensemble of cost-sensitive hypernetwork for class-imbalance learning[A].Proceedings of IEEE International Conference on Systems,Man,and Cybernetics[C].IEEE,2013.1883-1888.
[13] 孙焕良,鲍玉斌,于戈.一种基于划分的孤立点检测算法[J].软件学报,2006,17(5):1009-1016. Sun Huan-liang,Bao Yu-bin,Yu Ge.An algorithm based on partition for outlier detection[J].Journal of Software,2006,17(5):1009-1016.(in Chinese)
[14] Gordon G J,Jensen R V,Hsiao L L,et al.Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma[J].Cancer research,2002,62(17):4963-4967.
[15] Singh D,Febbo P G,Ross K,et al.Gene expression correlates of clinical prostate cancer behavior[J].Cancer Cell,2002,1(2):203-209.
[16] Liu L,Wong K C,Wang Y.A global optimal algorithm for class-dependent discretization of continuous data[J].Intelligent Data Analysis,2004,8(2):151-170.
[17] 张海,徐宗本.学习理论综述(I):稳定性与泛化性[J].工程数学学报,2008,25(1):1-9. Zhang Hai,Xu Zong-ben.A survey on learning theory (I):stability and generalization[J].Chinese Journal of Engineering Mathematics,2008,25(1):1-9.(in Chinese)
/
〈 |
|
〉 |