Deep Reinforcement Learning Based Coflow Scheduling in Data Center Networks

MA Teng, HU Yu-xiang, ZHANG Xiao-hui

ACTA ELECTRONICA SINICA ›› 2018, Vol. 46 ›› Issue (7) : 1617-1624.

PDF(809 KB)
CIE Homepage  |  Join CIE  |  Login CIE  |  中文 
PDF(809 KB)
ACTA ELECTRONICA SINICA ›› 2018, Vol. 46 ›› Issue (7) : 1617-1624. DOI: 10.3969/j.issn.0372-2112.2018.07.011

Deep Reinforcement Learning Based Coflow Scheduling in Data Center Networks

  • MA Teng, HU Yu-xiang, ZHANG Xiao-hui
Author information +

Abstract

Coflow completion time minimization is one of the challenges of traffic management in data center networks.Inspired by the newest research progress in deep reinforcement learning,which is one direction of artificial intelligence,this paper proposes a novel coflow scheduling mechanism.It translates the coflow scheduling problem with bandwidth constraint into a continuous learning process.By learning the previous decisions,the best scheduling is obtained.By introducing back filling and limited multiplexing mechanisms,the system is work-conserving and starvation-free.Simulation results show that,under different network load,compared with other scheduling mechanisms,the average coflow completion time is reduced.Especially when the network load is heavy,the proposed mechanism achieves about 50% performance improvement than the state-of-the-art scheduling mechanism.

Key words

data center network / coflow / flow scheduling

Cite this article

Download Citations
MA Teng, HU Yu-xiang, ZHANG Xiao-hui. Deep Reinforcement Learning Based Coflow Scheduling in Data Center Networks[J]. Acta Electronica Sinica, 2018, 46(7): 1617-1624. https://doi.org/10.3969/j.issn.0372-2112.2018.07.011

References

[1] DEAN J,GHEMAWAT S.Map Reduce:simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113.
[2] ZAHARIA M,CHOWDHURY M,FRANKLIN M J,et al.Spark:cluster computing with working sets[J].HotCloud,2010,10(10-10):95.
[3] ISARD M,BUDIU M,YU Y,et al.Dryad:distributed data-parallel programs from sequential building blocks[A].Proceedings of ACM EuroSys[C].Lisboa:ACM,2007.59-72.
[4] CHOWDHURY M,ZAHARIA M,MA J,et al.Managing data transfers in computer clusters with orchestra[J].ACM Special Interest Group on Data Communication,2011,41(4):98-109.
[5] CHOWDHURY M,STOICA I.Coflow:A networking abstraction for cluster applications[A].Proceedings of ACM HotNets[C].Redmond:ACM,2012.31-36.
[6] SILVER D,HUANG A,MADDISON C,et al.Mastering the game of Go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489.
[7] 赵冬斌,邵坤,朱圆恒,等.深度强化学习综述:兼论计算机围棋的发展[J].控制理论与应用,2016,33(6):701-717. ZHAO Dong-bin,SHAO Kun,ZHU Yuan-heng,et al.Review of deep reinforcement learning and discussions on the development of computer Go[J].Control Theory & Applications,2016,33(6):701-717.(in Chinese)
[8] MNIH V,KAVUKCUOGLU K,SILVER D,et al.Human-level control through deep reinforcement learning[J].Nature,2015,518(7540):529-533.
[9] MAO H,ALIZADEH M,MENACHE I,et al.Resource management with deep reinforcement learning[A].Proceedings of the ACM HotNets[C].Atlanta:ACM,2016.50-56.
[10] WILSON C,BALLANI H,KARAGIANNIS T,et al.Better never than late:meeting deadlines in datacenter networks[J].ACM Special Interest Group on Data Communication,2011,41(4):50-61.
[11] HONG C,CAESAR M,GODFREY P B,et al.Finishing flows quickly with preemptive scheduling[J].ACM Special Interest Group on Data Communication,2012,42(4):127-138.
[12] ALIZADEH M,YANG S,SHARIF M,et al.Pfabric:Minimal near-optimal datacenter transport[A].ACM SIGCOMM Computer Communication Review[C].Hong Kong:ACM,2013.435-446.
[13] CHOWDHURY M,ZHONG Y,STOICA I.Efficient coflow scheduling with varys[A].Proceedings of ACM SIGCOMM[C].Chicago:ACM,2014.443-454.
[14] DOGAR F R,KARAGIANNIS T,BALLANI H,et al.Decentralized task-aware scheduling for data center networks[A].Proceedings of the ACM SIGCOMM Computer Communication Review[C].Chicago:ACM,2014.431-442.
[15] ZHAO Y,CHEN K,BAI W,et al.Rapier:Integrating routing and scheduling for coflow-aware data center networks[A].Proceedings of IEEE INFOCOM[C].Hong Kong:IEEE,2015.424-432.
[16] MC KEOWN N,ANDERSON T,BALAKRISHNAN H,et al.OpenFlow:enabling innovation in campus networks[J].ACM SIGCOMM Computer Communication Review,2008,38(2):69-74.
[17] JEYAKUMAR V,ALIZADEH M,MAZIèRES D,et al.EyeQ:Practical network performance isolation at the edge[A].Proceedings of NSDI[C].Lombard:USENIX,2013.297-312.
[18] SUTTON R S,BARTO A G.Reinforcement Learning:An Introduction[M].Cambridge:MIT Press,1998.
[19] HAGAN M T,DEMUTH H B,BEALE M H,et al.Neural Network Design[M].USA:PWS Publishing Company Boston,1996.
[20] SUTTON R S,MCALLESTER D A,SINGH S P,et al.Policy gradient methods for reinforcement learning with function approximation[A].Proceedings of NIPS[C].Denver:NIPS,2000.1057-1063.
[21] SCHULMAN J,LEVINE S,ABBEEL P,et al.Trust region policy optimization[A].Proceedings of ICML[C].Lille:IMLS,2015.1889-1897.
[22] JIANG J,MA S,LI B,et al.Adia:achieving high link utilization with coflow-aware scheduling in data center networks[J].IEEE Transactions on Cloud Computing,2016,99(11):1-10.
[23] MA S,JIANG J,LI B,et al.Chronos:meeting coflow deadlines in data center networks[A].Proceedings of the IEEE International Conference on Communications (ICC)[C].Kuala Lumpur:IEEE,2016.1-6.

Funding

National Program on Key Basic Research Project of China  (973 Program) (No.2013CB329104); National High-tech R&D Program of China  (863 Program) (No.2013AA013505)
PDF(809 KB)

1799

Accesses

0

Citation

Detail

Sections
Recommended

/