A Non-Feature Fast 3D Rigid-Body Image Registration Method

ZHOU Guang-bing, SONG Hua-jun, WU Yu-xing, REN Peng

ACTA ELECTRONICA SINICA ›› 2018, Vol. 46 ›› Issue (10) : 2384-2390.

PDF(1256 KB)
CIE Homepage  |  Join CIE  |  Login CIE  |  中文 
PDF(1256 KB)
ACTA ELECTRONICA SINICA ›› 2018, Vol. 46 ›› Issue (10) : 2384-2390. DOI: 10.3969/j.issn.0372-2112.2018.10.011

A Non-Feature Fast 3D Rigid-Body Image Registration Method

  • ZHOU Guang-bing, SONG Hua-jun, WU Yu-xing, REN Peng
Author information +

Abstract

3D image registration (IR) aims to map one image to another image of a same scene, widely used in medical diagnosis and other applications. The existing methods mostly use feature to registration and have specific constraint condition which have many problems such as time-consuming, strong random in feature extraction and not flexible under constraint condition. For those problems, an intensity-based method for non-feature 3D rigid IR is proposed in this paper. The method uses Taylor expansion and the least squares (LS) to directly get the transformation parameters and has advantage of high processing speed with less processed data. It is shown by numerous experiments that the proposed IR method has high accuracy and only uses very small proportion data to process.

Key words

3D image registration / image transformation / Taylor expansion

Cite this article

Download Citations
ZHOU Guang-bing, SONG Hua-jun, WU Yu-xing, REN Peng. A Non-Feature Fast 3D Rigid-Body Image Registration Method[J]. Acta Electronica Sinica, 2018, 46(10): 2384-2390. https://doi.org/10.3969/j.issn.0372-2112.2018.10.011

References

[1] BOLTCHEVA D,YVINEC M,BOISSONNAT J D.Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration[J].Neuroimage,2009,46(3):786.
[2] SONG Hua-jun,XIAO Bo-tao,HU Qin-zhen,et al.Integrating local binary patterns into normalized moment of inertia for updating tracking templates[J].Chinese Journal of Electronics,2016,25(4):706-710.
[3] 宋婉莹,李明,张鹏,等.基于加权合成核与三重Markov场的极化SAR图像分类方法[J].电子学报,2016,44(3):520-526. SONG Wan-ying,LI Ming,ZHANG Peng,et al.A classification method of polSAR image based on weighted composite kernel and triplet Markov field[J].Acta Electronica Sinica,2016,44(3):520-526.(in Chinese)
[4] LIU L,JIANG T,YANG J,et al.Fingerprint registration by maximization of mutual information[J].IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society,2006,15(5):1100-1110.
[5] DUFAUX F,KONRAD J.Efficient,robust,and fast global motion estimation for video coding[J].IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society,2000,9(3):497-501.
[6] 杨媛,高勇,房继军,等.一种改进的视频画质增强算法及VLSI设计[J].电子学报,2012,40(8):1655-1658. YANG Yuan,GAO Yong,FANG Ji-jun,et al.An improved video quality enhancement algorithm and VLSI design[J].Acta Electronica Sinica,2012,40(8):1655-1658.(in Chinese)
[7] DAVIS M H,KHOTANZAD A,FLAMIG D P,et al.A physics-based coordinate transformation for 3-D image matching[J].IEEE Transactions on Medical Imaging,1997,16(3):317.
[8] QIU Pei-hua,XING Chen.Feature based image registration using non-degenerate pixels[J].Signal Processing,2013,93(4):706-720.
[9] SAEED N.Magnetic resonance image segmentation using pattern recognition,and applied to image registration and quantitation[J].Nmr in Biomedicine,1998,11(4-5):157.
[10] DENTON E R,SONODA L I,RUECKERT D,et al.Comparison and evaluation of rigid,affine,and non-rigid registration of breast MR images[J].J Comput Assist Tomogr,1999,3661(5):800-805.
[11] AVANTS B B,GROSSMAN M,GEE J C.Symmetric diffeomorphic image registration:evaluating automated labeling of elderly and neurodegenerative cortex and frontal lobe[A].Proceedings of International Conference on Biomedical Image Registration[C].Berlin:Springer-Verlag,2006.50-57.
[12] QIU Pei-hua,XING Chen.On nonparametric image registration[J].Techno Metrics,2013,55(2):174-188.
[13] TUSTISON N J,AVANTS B B,GEE J C.Directly manipulated free-form deformation image registration[J].IEEE Transactions on Image Processing,2009,18(3):624-635.
[14] Xing Chen,Qiu Pei-hua.Intensity-based image registration by nonparametric local smoothing[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,33(10):2081-2092.
[15] 牛慧贤.基于分数阶傅里叶变换的刚性图像配准技术[D].郑州:郑州大学,2015. NIU Hui-xian.Rigid Image Registration Technology Based on Fractional Fourier Transform[D].Zhengzhou:Zhengzhou University,2015.(in Chinese)
[16] KHOO Y,KAPOOR A.Non-iterative rigid 2D/3D point-set registration using semidefinite programming[J].IEEE Transactions on Image Processing,2016,25(7):2956-2970.
[17] SO R W K,CHUNG A C S.A novel learning-based dissimilarity metric for rigid and non-rigid medical image registration by using Bhattacharyya Distances[J].Pattern Recognition,2017,62(C):161-174.
[18] YANG J,LI H,JIA Y.Go-ICP:Solving 3D registration efficiently and globally optimally[A].Proceedings of IEEE International Conference on Computer Vision[C].USA:IEEE,2013.1457-1464.
[19] EGGERT D W,LORUSSO A,FISHER R B.Estimating 3-D rigid body transformations:a comparison of four major algorithms[J].Machine Vision and Applications,1997,9(5):272-290.
[20] WANG Y.Image Processing and Jump Regression Analysis[M].USA:John Wiley,2006.
[21] QIU Pei-hua,NGUYEN T.On image registration in magnetic resonance imaging[A].Proceedings of International Conference on Biomedical Engineering and Informatics[C].USA:IEEE,2008.753-757.
[22] WU G,QI F,SHEN D.Learning-based deformable registration of MR brain images[J].IEEE Transactions on Medical Imaging,2006,25(9):1145.

Funding

National Natural Science Foundation of China (No.61305012); National Natural Science Foundation of China (No.61671481); Fundamental Research Funds for the Central Universities (No.18CX02109A)
PDF(1256 KB)

1721

Accesses

0

Citation

Detail

Sections
Recommended

/