Indoor Wi-Fi/PDR Fusion Localization Based on Adaptive and Robust Kalman Filter

ZHOU Mu, GENG Xiao-long, XIE Liang-bo, NIE Wei, TIAN Zeng-shan

ACTA ELECTRONICA SINICA ›› 2019, Vol. 47 ›› Issue (1) : 9-15.

PDF(1102 KB)
CIE Homepage  |  Join CIE  |  Login CIE  |  中文 
PDF(1102 KB)
ACTA ELECTRONICA SINICA ›› 2019, Vol. 47 ›› Issue (1) : 9-15. DOI: 10.3969/j.issn.0372-2112.2019.01.002

Indoor Wi-Fi/PDR Fusion Localization Based on Adaptive and Robust Kalman Filter

  • ZHOU Mu, GENG Xiao-long, XIE Liang-bo, NIE Wei, TIAN Zeng-shan
Author information +

Abstract

In response to the problem of dynamic channel state information in complex indoor environment,this paper proposes an adaptive and robust Kalman filter approach for indoor Wi-Fi/Pedestrian Dead Reckoning (PDR) fusion localization.This approach conducts the multiple location information fusion of Wi-Fi propagation model and PDR to infer the optimal location estimate of the user.At the same time,based on the filter feedback mechanism,the fusion localization result is used to dynamically modify the path loss exponent in weighted least square method as well as the observation covariance in filter model with the purpose of guaranteeing that the Wi-Fi propagation model is close to the real indoor environment.The experimental results indicate that the proposed method is capable of well solving the problems of low localization accuracy by using the Wi-Fi solely and accumulative error in PDR.Furthermore,the real-time modification of path loss exponent and observation covariance improves the stability of the proposed fusion localization system.

Key words

indoor fusion localization / robust Kalman filter / Wi-Fi / pedestrian dead reckoning / environmental adaptation

Cite this article

Download Citations
ZHOU Mu, GENG Xiao-long, XIE Liang-bo, NIE Wei, TIAN Zeng-shan. Indoor Wi-Fi/PDR Fusion Localization Based on Adaptive and Robust Kalman Filter[J]. Acta Electronica Sinica, 2019, 47(1): 9-15. https://doi.org/10.3969/j.issn.0372-2112.2019.01.002

References

[1] ALDIN N B,ERCELEBI E,AYKAC M.Advanced boundary virtual reference algorithm for an indoor system using an active RFID interrogator and transponder[J].Analog Integrated Circuits and Signal Processing,2016,88(3):415-430.
[2] 肖竹,王勇超,田斌,等.超宽带定位研究与应用:回顾和展望[J].电子学报,2011,39(1):133-141. XIAO Zhu,WANG Yong-chao,TIAN Bin,et al.Development and prospect of ultra-wideband localization research and application[J].Acta Electronica Sinica,2011,39(1):133-141.(in Chinese)
[3] HONG K,LeeS K,Lee K.Performance improvement in zigbee-based home networks with coexisting WLANs[J].Pervasive and Mobile Computing,2015,19:156-166.
[4] SHEN L L,HUI W W S.Improved pedestrian dead-reckoning-based indoor positioning by RSSI-based heading correction[J].IEEE Sensors Journal,2016,16(21):7762-7773.
[5] 陈永光,李修和.基于信号强度的室内定位技术[J].电子学报,2004,32(9):1456-1458. CHEN Yong-guang,LI Xiu-he.Signal strength based indoor geolocation[J].Acta Electronica Sinica,2004,32(9):1456-1458.(in Chinese)
[6] EL-KAFRAWY K,YOUSSEF M,EL-KEYI A,et al.Propagation modeling for accurate indoor WLAN RSS-based localization[A].Proceedings of IEEE 72nd Vehicular Technology Conference Fall[C].Ottawa:IEEE,2010.1-5.
[7] GU Z,CHEN Z,ZHANG Y,et al.Reducing fingerprint collection for indoor localization[J].Computer Communications,2015,83:56-63.
[8] JUNG S,LEE C O,HAN D.Wi-Fi fingerprint-based approaches following log-distance path loss model for indoor positioning[A].Proceedings of IEEE MTT-S International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals[C].Daejeon:IEEE Computer Society,2011.1-2.
[9] PAULA T,BERNARDOS A M,CASAR J R.Weighted least squares techniques for improved received signal strength based localization[J].Sensors,2011,11(9):8569-8592.
[10] BARSOCCHI P,LENZI S,CHESSA S,et al.A novel approach to indoor RSSI localization by automatic calibration of the wireless propagation model[A].Proceedings of IEEE 69th Vehicular Technology Conference[C].Barcelona:IEEE,2009.1-5.
[11] BERNARDOS A M,CASAR J R,TARRIO P.Real time calibration for RSS indoor positioning systems[A].Proceedings of International Conference on Indoor Positioning and Indoor Navigation[C].Zurich:IEEE Computer Society,2010.1-7.
[12] CAI S,LIAO W,LUO C,et al.CRIL:An efficient online adaptive indoor localization system[J].IEEE Transactions on Vehicular Technology,2017,66(5):4148-4160.
[13] CHANG G.Kalman filter with both adaptivity and robustness[J].Journal of Process Control,2014,24(3):81-87.
[14] YANG Y,FAN X,ZHUO Z,et al.Amended kalman filter for maneuvering target tracking[J].Chinese Journal of Electronics,2016,25(6):1166-1171.

Funding

National Natural Science Foundation of China (No.61771083, No.61704015); Program for Changjiang Scholars and Innovative Research Team in University (No.IRT1299); Fund of Key Laboratory of Chongqing Municipal Science & Technology Commission,  Chongqing Research Program of Basic and Frontier Technology (No.cstc2017jcyjAX0380, No.cstc2015jcyjBX0065); Supported by Excellent Achievements Transformation Fund of Universities in Chongqing (No.KJZH17117)
PDF(1102 KB)

1512

Accesses

0

Citation

Detail

Sections
Recommended

/