Multi-Objective Firefly Algorithm Based on Multiply Cooperative Strategies
XIE Cheng-wang1,2, ZHANG Fei-long2, LU Jian-bo1, XIAO Chi2, LONG Guang-lin1
1. School of Computer and Information Engineering, Nanning Normal University, Nanning, Guangxi 530299, China;
2. School of Software, East China Jiaotong University, Nanchang, Jiangxi 330013, China
Abstract:More and more complex multi-objective optimization problems have emerged in the real world,and the novel heuristic algorithms need to be developed to meet the challenge.A multi-objective firefly algorithm based on multiply cooperative strategies (MOFA-MCS) is proposed in the paper.MOFA-MCS uses the method of homogenization and randomization to generate the initial population,adopts the elite solutions in the external archive to lead the firefly to move,exerts Lévy flights to add random disturbance in the moving process,and finally,the ε-three-point shortest path strategy is also applied to maintain the diversity of the archive solutions.MOFA-MCS is compared with other six representative multi-objective evolutionary algorithms on 12 benchmark multi-objective test problems,and the experimental results show that MOFA-MCS has significant performance advantages in terms of convergence and diversity.
[1] SRINIVAS N,DEB K.Multi-objective optimization using non-dominated sorting in genetic algorithms[J].Evolutionary Computation,1994,2(3):221-248.
[2] DEBK,PRATAP A,AGARWAL S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[3] ZITZLER E,THIELE L.Multi-objective evolutionary algorithms:A comparative case study and the strength Pareto approach[J].IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
[4] ZITZLER E,LAUMANNS M,THIELE L.SPEA2:Improving the strength pareto evolutionary algorithm[A].Evolutionary Methods for Design,Optimization and Control with Applications to Industrial Problems[C].Berlin:Springer-Verlag,2002.95-100.
[5] ZHANG Q,LI H.MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J].IEEE Transactions on Evolutionary Computation,2007,11(6):712-731.
[6] WANG LP,ZHANG QF,ZHOU AM,et al.Constrained subproblems in a decomposition-based multi-objective evolutionary algorithm[J].IEEE Transactions on Evolutionary Computation,2016,20(3):475-480.
[7] Nebro AJ,Luna F,Alba E,et al.AbYSS:Adapting scatter search to multi-objective optimization[J].IEEE Transactions on Evolutionary Computation,2008,12(4):439-457.
[8] 谢承旺,许雷,赵怀瑞,等.应用精英反向学习的多目标烟花爆炸算法[J].电子学报,2016,44(5):1180-1188. XIE Cheng-wang,XU Lei,ZHAO Huai-rui,et al.Multi-objective fireworks optimization algorithm using elite opposition-based learning[J].Acta Electronica Sinica,2016,44(5):1180-1188.(in Chinese)
[9] 谢承旺,许雷,汪慎文,等.一种增强型多目标烟花爆炸算法[J].电子学报,2017,45(10):2323-2331. XIE Cheng-wang,XU Lei,WANG Shen-wen,et al.Anenhanced multi-objective fireworks explosion optimization algorithm[J].Acta Electronica Sinica,2017,45(10):2323-2331.(in Chinese)
[10] YANG X S.Nature-Inspired Metaheuristic Algorithms[M].US:Luniver Press,2008.
[11] YANG X S.Multiobjective firefly algorithm for continuous optimization[J].Engineering with Computers,2013,29(2):175-184.
[12] TSAI C W,HUANG Y T,CHIANG M C.A non-dominated sorting firefly algorithm for multi-objective optimization[A].International Conference on Intelligent Systems Design and Applications[C].US:IEEE,2015.62-67.
[13] 谢承旺,肖驰,丁立新,等.HMOFA:一种混合型多目标萤火虫算法[J].软件学报,2018,29(4):1143-1162. XIE CW,XIAO C,DING LX,et al.HMOFA:A hybrid multi-objective firefly algorithm[J].Journal of Software,2018,29(4):1143-1162.(in Chinese)
[14] 谢承旺,邹秀芬,夏学文,等.一种多策略融合的多目标粒子群优化算法[J].电子学报,2015,43(8):1538-1544. XIE Cheng-wang,ZOU Xiu-fen,XIA Xue-wen,et al.Amulti-objective particle swarm optimization algorithm integrating multiply strategies[J].Acta Electronica Sinica,2015,43(8):1538-1544.(in Chinese)
[15] YANG X S,DEB S.Eagle strategy using lévy walk and firefly algorithms for stochastic optimization[J].Studies in Computational Intelligence,2010,284:101-111.
[16] LAUMANNS M,THIELE L,DEB K,et al.Combining convergence and diversity in evolutionary multi-objective optimization[J].Evolutionary Computation,2002,10(3):263-282.
[17] 谢承旺,王志杰,夏学文.应用档案精英学习和反向学习的多目标进化算法[J].计算机学报,2017,40(3):757-772. XIE Cheng-wang,WANG Zhi-Jie,XIA Xue-Wen.Multi-objective evolutionary algorithm based on archive-elite learning and opposition-based learning[J].Chinese Journal of Computers,2017,40(3):757-772.(in Chinese)
[18] ZITZLER E,DEB K,THIELE L.Comparision of multi-objective evolutionary algorithms:Empirical results[J].Evolutionary Computation,2000,8(2):173-195.
[19] DEB K,THIELE L,LAUMANNS M,et al.Scalable multi-objective optimization test problems[A].Proceedings of the IEEE Congress on Evolutionary Computation (CEC)[C].Piscataway:IEEE Service Center,2002.825-830.
[20] BOSMAN P A N,THIERENS D.The balance between proximity and diversity in multiobjective evolutionary algorithms[J].IEEE Transactions on Evolutionary Computation,2003,16(1):51-69.