Abstract:The parametric covariance matrix estimation (PCE) method uses the system parameters to estimate the clutter covariance matrix (CCM).It can greatly improve the performance of space-time adaptive processing (STAP) in nonhomogeneous environment.However,the performance of PCE method is seriously degraded when the system parameter information or clutter distribution is in error.This paper presents a robust parametric covariance matrix estimation based STAP method.First the clutter distribution is estimated by the sparse recovery (SR) and Radon transform.Then a normalized generalized inner product statistic (N-GIP) is proposed to modify the clutter distribution parameters.Finally,the PCE method is utilized to estimate the CCM and the STAP is used to suppress clutter.The simulation experiments and measured data processing results show that the robustness of the proposed method is greatly improved.Compared with the sparse recovery STAP (SR STAP) and forward/backward smoothing STAP (F/B STAP),the filter notches are more accurate and deeper.This benefits the detection of slow targets.
[1] 谢俊好,许荣庆.高频地波舰载超视距雷达中的空时处理[J].系统工程与电子技术,1998,20(2):30-36. Xie J,Xu R.Space-time processing for high frequency surface-wave shipborne over-the-horizon radar[J].Systems Engineering and Electronics,1998,20(2):30-36.(in Chinese)
[2] Melvin W L.Space-time adaptive radar performance in heterogeneous clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):621-633.
[3] Wang Y L,Chen J W,Bao Z,et al.Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(1):70-81.
[4] Guerci J R,Goldstein J S,Reed I S.Optimal and adaptive reduced-rank STAP[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):647-663.
[5] Cristallini D,Burger W.A robust direct data domain approach for STAP[J].IEEE Transactions on Signal Processing,2012,60(3):1283-1294.
[6] Zhu Y,Wei Y,Zhu K.Sea clutter suppression for shipborne HFSWR using joint sparse recovery-based STAP[J].Electronics Letters,2016,52(12):1067-1069.
[7] 孙珂.非均匀杂波环境下基于稀疏恢复的STAP技术研究[D].北京:清华大学,2011. SUN K.STAP Technique Using Sparse Recovery in Heterogeneous Clutter Scenario[D].Beijing:Tsinghua University,2011.
[8] 阳召成.基于稀疏性的空时自适应处理理论和方法[D].长沙:国防科学技术大学,2013. YANG Z C.Theory and Methods of Sparsity-Based Space-Time Adaptive Processing[D].Changsha:National University of Defense Technology,2013.
[9] Wang Z,Wang Y,Duan K,et al.Subspace-augmented clutter suppression technique for STAP radar[J].IEEE Geoscience and Remote Sensing Letters,2016,13(3):1-5.
[10] 马泽强,王希勤,刘一民,等.基于稀疏恢复的空时二维自适应处理技术研究现状[J].雷达学报,2014,3(2):217-228. Ma Z Q,Wang X Q,Liu Y M,et al.An overview on sparse recovery-based STAP[J].Journal of Radars,2014,3(2):217-228.
[11] Melvin W L,Showman G A.An approach to knowledge-aided covariance estimation[J].IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):1021-1042.
[12] Xie J,Yuan Y,Liu Y.Experimental analysis of sea clutter in shipborne HFSWR[J].IEE Proceedings-Radar,Sonar and Navigation,2001,148(2):67-71.
[13] Barrick D,Snider J.The statistics of HF sea-echo Doppler spectra[J].IEEE Journal of Oceanic Engineering,1977,25(2):19-28.
[14] KlemmR.Principles of Space-Time Adaptive Processing[M].London UK:The Institute of Engineering and Technology,2006.121-127
[15] Reed I S,Mallett J D,Brennan L E.Rapid convergence rate in adaptive arrays[J].IEEE Transactions on Aerospace and Electronic Systems,1974,AES-10(6):853-863.
[16] Nilubol C,Mersereau R M,Smith M.A SAR target classifier using Radon transforms and hidden Markov models[J].Digital Signal Processing,2002,12(2):274-283.
[17] Xie J,Wang Z,Ji Z,et al.High-resolution ocean clutter spectrum estimation for shipborne HFSWR using sparse-representation based MUSIC[J].IEEE Journal of Oceanic Engineering,2015,40(3):546-557.